AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt

Wenli Lu§Rui Jiang§Xiong Yin( )Leyu Wang( )
State Key Laboratory of Chemical Resource Engineering,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology,Beijing,100029,China;

§ Wenli Lu and Rui Jiang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Photocathode with superior catalytic activity, long-term stability, and fast mass/electron transfer is highly desirable but challenging for dye-sensitized solar cell (DSC). Herein, the ZIF-67 grown on carbon cloth is successfully transformed into CoSe2 embedded in N-doped carbon nanocage (CoSe2/N-C) via a growth-carbonization-selenization process. The carbon cloth supported CoSe2/N-C, as photocathode of DSC, demonstrates a good long-term stability and high photovoltaic efficiency (8.40%), outperforming Pt. The good efficiency can be attributed to the high catalytic activity of CoSe2, fast mass transfer of porous three-dimensional (3D) structure, and good electron transport derived from the intimate contact between CoSe2 and highly conductive carbon cloth. The high stability would be ascribed to N-doped carbon coating that perfectly prevents CoSe2 from decomposition. This work will pave the way to develop highly efficient and stable Pt-free photocathode for DSC.

Electronic Supplementary Material

Download File(s)
12274_2018_2195_MOESM1_ESM.pdf (2.7 MB)

References

1

O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-740.

2

Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595-6663.

3

Wu, J. H.; Lan, Z.; Lin, J. M.; Huang, M. L.; Huang, Y. F.; Fan, L. Q.; Luo, G. G.; Lin, Y.; Xie, Y. M.; Wei, Y. L. Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 2017, 46, 5975-6023.

4

Lu, J. F.; Chang, Y. C.; Cheng, H. Y.; Wu, H. P.; Cheng, Y. B.; Wang, M. K.; Diau, E. W. G. Molecular engineering of organic dyes with a hole-extending donor tail for efficient all-solid-state dye-sensitized solar cells. ChemSusChem 2015, 8, 2529-2536.

5

Cheng, Y. B.; Pascoe, A.; Huang, F. Z.; Peng, Y. Print flexible solar cells. Nature 2016, 539, 488-489.

6

Cui, X. D.; Xie, Z. Q.; Wang, Y. Novel CoS2 embedded carbon nanocages by direct sulfurizing metal-organic frameworks for dye-sensitized solar cells. Nanoscale 2016, 8, 11984-11992.

7

Liu, R. Y.; Liu, Y. Q.; Zou, H. Y.; Song, T.; Sun, B. Q. Integrated solar capacitors for energy conversion and storage. Nano Res. 2017, 10, 1545-1559.

8

Gong, F.; Wang, H.; Xu, X.; Zhou, G.; Wang, Z. S. In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 2012, 134, 10953-10958.

9

Duan, Y. Y.; Tang, Q. W.; Liu, J.; He, B. L.; Yu, L. M. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Angew. Chem., Int. Ed. 2014, 53, 14569-14574.

10

Yun, S. N.; Lund, P. D.; Hinsch, A. Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy Environ. Sci. 2015, 8, 3495-3514.

11

Xue, Y. H.; Liu, J.; Chen, H.; Wang, R. G.; Li, D. Q.; Qu, J.; Dai, L. M. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem., Int. Ed. 2012, 51, 12124-12127.

12

Tang, Q. W.; Zhang, H. H.; Meng, Y. Y.; He, B. L.; Yu, L. M. Dissolution engineering of platinum alloy counter electrodes in dye-sensitized solar cells. Angew. Chem., Int. Ed. 2015, 54, 11448-11452.

13

Cui, X. J.; Xiao, J. P.; Wu, Y. H.; Du, P. P.; Si, R.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Zhang, W. H.; Deng, D. H. et al. A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dyesensitized solar cells. Angew. Chem., Int. Ed. 2016, 55, 6708-6712.

14

Zhang, M. M.; Zai, J. T.; Liu, J.; Chen, M.; Wang, Z. R.; Li, G.; Qian, X. F.; Qian, L. W.; Yu, X. B. A hierarchical CoFeS2/reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells. Dalton Trans. 2017, 46, 9511-9516.

15

Yi, L. X.; Liu, Y. Y.; Yang, N. L.; Tang, Z. Y.; Zhao, H. J.; Ma, G. H.; Su, Z. G.; Wang, D. One dimensional CuInS2-ZnS heterostructured nanomaterials as low-cost and high-performance counter electrodes of dye-sensitized solar cells. Energy Environ. Sci. 2013, 6, 835-840.

16

Zhou, H. W.; Shi, Y. T.; Dong, Q. S.; Wang, Y. X.; Zhu, C.; Wang, L.; Wang, N.; Wei, Y.; Tao, S. Y.; Ma, T. L. Interlaced W18O49 nanofibers as a superior catalyst for the counter electrode of highly efficient dye-sensitized solar cells. J. Mater. Chem. A. 2014, 2, 4347-4354.

17

Li, X.; Pan, K.; Qu, Y.; Wang, G. F. One-dimension carbon self-doping g-C3N4 nanotubes: Synthesis and application in dye-sensitized solar cells. Nano Res. 2018, 11, 1322-1330.

18

Ni, B.; Ouyang, C.; Xu, X. B.; Zhuang, J.; Wang, X. Modifying commercial carbon with trace amounts of ZIF to prepare derivatives with superior ORR activities. Adv. Mater. 2017, 29, 1701354.

19

Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y. E.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889-10893.

20

Yang, J.; He, D. S.; Chen, W. X.; Zhu, W.; Zhang, H.; Ren, S.; Wang, X.; Yang, Q. H.; Wu, Y. E.; Li, Y. D. Bimetallic Ru-Co clusters derived from a confined alloying process within zeolite-imidazolate frameworks for efficient NH3 decomposition and synthesis. ACS Appl. Mater. Interfaces 2017, 9, 39450-39455.

21

Yin, X.; Guo, Y. J.; Xue, Z. S.; Xu, P.; He, M.; Liu, B. Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer. Nano Res. 2015, 8, 1997-2003.

22

Xue, Z. S.; Zhang, W.; Yin, X.; Cheng, Y. M.; Wang, L.; Liu, B. Enhanced conversion efficiency of flexible dye-sensitized solar cells by optimization of the nanoparticle size with an electrophoretic deposition technique. RSC Adv. 2012, 2, 7074-7080.

23

Xu, Z. Z.; Yin, X.; Guo, Y. J.; Pu, Y.; He, M. Ru-doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance. J. Mater. Chem. C 2018, 6, 4746-4752.

24

Dai, X. Y.; Chen, Z.; Yao, T.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Wei, S. Q. et al. Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 2017, 53, 11568-11571.

25

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 130, 1962-1966.

26

Pan, Y.; Sun, K. A.; Liu, S. J.; Cheong, W. C.; Chen, Z.; Wang, Y.; Liu, Y. Q.; Wang, D. S.; Peng, Q.; Chen, C. et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610-2618.

27

Li, X. Y.; Jiang, Q. Q.; Dou, S.; Deng, L. B.; Huo, J.; Wang, S. Y. ZIF-67-derived Co-NC@CoP-NC nanopolyhedra as an efficient bifunctional oxygen electrocatalyst. J. Mater. Chem. A. 2016, 4, 15836-15840.

28

Song, J. H.; Zhu, C. Z.; Xu, B. Z.; Fu, S. F.; Engelhard, M. H.; Ye, R. F.; Du, D.; Beckman, S. P.; Lin, Y. H. Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1601555.

29

Zhang, H. X.; Yang, B.; Wu, X. L.; Li, Z. J.; Lei, L. C.; Zhang, X. W. Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2015, 7, 1772-1779.

30

Zhou, W. J.; Lu, J.; Zhou, K.; Yang, L. J.; Ke, Y. T.; Tang, Z. H.; Chen, S. W. CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 2016, 28, 143-150.

31

Ekspong, J.; Sharifi, T.; Shchukarev, A.; Klechikov, A.; Wågberg, T.; Gracia-Espino, E. Stabilizing active edge sites in semicrystalline molybdenum sulfide by anchorage on nitrogen-doped carbon nanotubes for hydrogen evolution reaction. Adv. Funct. Mater. 2016, 26, 6766-6776.

32

Liu, K. L.; Wang, F. M.; Xu, K.; Shifa, T. A.; Cheng, Z. Z.; Zhan, X. Y.; He, J. CoS2xSe2(1−x) nanowire array: An efficient ternary electrocatalyst for the hydrogen evolution reaction. Nanoscale 2016, 8, 4699-4704.

33

Chen, T.; Li, S. Z.; Wen, J.; Gui, P. B.; Fang, G. J. Metal organic framework template derived porous CoSe2 nanosheet arrays for energy conversion and storage. ACS Appl. Mater. Interfaces 2017, 9, 35927-35935.

34

Qu, K. G.; Zheng, Y.; Jiao, Y.; Zhang, X. X.; Dai, S.; Qiao, S. Z. Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1602068.

35

Lai, Q. X.; Zhao, Y. X.; Liang, Y. Y.; He, J. P.; Chen, J. H. In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction. Adv. Funct. Mater. 2016, 26, 8334-8344.

36

Ye, L.; Chai, G. L.; Wen, Z. H. Zn-MOF-74 derived N-doped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1606190.

37

Yin, X.; Wu, F.; Fu, N. Q.; Han, J.; Chen, D. L.; Xu, P.; He, M.; Lin, Y. Facile synthesis of poly(3, 4-ethylenedioxythiophene) film via solid-state polymerization as high-performance Pt-free counter electrodes for plastic dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2013, 5, 8423-8429.

38

Dong, F. Y.; Guo, Y. J.; Xu, P.; Yin, X.; Li, Y. G.; He, M. Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells. Sci. China-Mater. 2017, 60, 295-303.

39

Liu, Z.; Sun, F.; Gu, L.; Chen, G.; Shang, T. T.; Liu, J.; Le, Z. Y.; Li, X. Y.; Wu, H. B.; Lu, Y. F. Post iron decoration of mesoporous nitrogen-doped carbon spheres for efficient electrochemical oxygen reduction. Adv. Energy Mater. 2017, 7, 1701154.

40

Chen, T. Y.; Huang, Y. J.; Li, C. T.; Kung, C. W.; Vittal, R.; Ho, K. C. Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells. Nano Energy 2017, 32, 19-27.

41

Wang, Y. C.; Wang, D. Y.; Jiang, Y. T.; Chen, H. A.; Chen, C. C.; Ho, K. C.; Chou, H. L.; Chen, C. W. FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2013, 52, 6694-6698.

42

Casaluci, S.; Gemmi, M.; Pellegrini, V.; Di Carlo, A.; Bonaccorso, F. Graphene-based large area dye-sensitized solar cell modules. Nanoscale 2016, 8, 5368-5378.

Nano Research
Pages 159-163
Cite this article:
Lu W, Jiang R, Yin X, et al. Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt. Nano Research, 2019, 12(1): 159-163. https://doi.org/10.1007/s12274-018-2195-5
Topics:

843

Views

58

Crossref

N/A

Web of Science

56

Scopus

3

CSCD

Altmetrics

Received: 29 June 2018
Revised: 29 August 2018
Accepted: 04 September 2018
Published: 17 September 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return