AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Biomedical applications of magneto-responsive scaffolds

Adedokun A. AdedoyinAdam K. Ekenseair( )
Department of Chemical EngineeringNortheastern University, Boston, MA02115-5000USA
Show Author Information

Graphical Abstract

Abstract

Stimuli-responsive biomaterials, capable of responding on-demand to changes in their local environment, have become a subject of interest in the field of regenerative medicine. Magneto-responsive biomaterials, which can be manipulated spatiotemporally via an external magnetic field, have emerged as promising candidates as active scaffolds for advanced drug delivery and tissue regeneration applications. These specialized biomaterials can be synthesized by physically and/or chemically incorporating magnetic nanoparticles into the biomaterial structure. However, despite their promising impact on the future of regenerative medicine, magneto-responsive biomaterials still have several limitations that need to be overcome before they can be implemented clinically in a reliable manner, as predicting their behavior and biocompatibility remains an ongoing challenge. This review article will focus on discussing the current fabrication methods used to synthesize magneto-responsive materials, efforts to predict and characterize magneto-responsive biomaterial behavior, and the application of magneto-responsive biomaterials as controlled drug delivery systems, tissue engineering scaffolds, and artificial muscles.

References

1

Qui, Y.; Park, K. Environment–sensitive hydrogels for drug delivery. Adv. Drug. Deliv. Rev. 2012, 64 Suppl, 49–60.

2

Li, Y. H.; Huang, G. Y.; Zhang, X. H.; Li, B. Q.; Chen, Y. M.; Lu, T. L.; Lu, T. J.; Xu, F. Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 2013, 23, 660–672.

3

Erb, R. M.; Martin, J. J.; Soheilian, R.; Pan, C. Z.; Barber, J. R. Actuating soft matter with magnetic torque. Adv. Funct. Mater. 2016, 26, 3859–3880.

4

Schmaljohann, D. Thermo–and pH–responsive polymers in drug delivery. Adv. Drug. Deliv. Rev. 2006, 58, 1655–1670.

5

Nguyen, K. T.; West, J. L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 2002, 23, 4307–4314.

6

Bawa, P.; Pillay, V.; Choonara, Y. E.; du Toit, L. C. Stimuli–responsive polymers and their applications in drug delivery. Biomed. Mater. 2009, 4, 022001.

7

Liu, F.; Urban, M. W. Recent advances and challenges in designing stimuli–responsive polymers. Prog. Polym. Sci. 2010, 35, 3–23.

8

Peppas, N. A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46.

9

Gaharwar, A. K.; Peppas, N. A.; Khademhosseini, A. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 2014, 111, 441–453.

10

Shubayev, V. I.; Pisanic II, T. R.; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug. Deliv. Rev. 2009, 61, 467–477.

11

Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021.

12

Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167–R181.

13

Ito, A.; Ino, K.; Hayashida, M.; Kobayashi, T.; Matsunuma, H.; Kagami, H.; Ueda, M.; Honda, H. Novel methodology for fabrication of tissue–engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng. 2005, 11, 1553–1561.

14

Ito, A.; Takizawa, Y.; Honda, H.; Hata, K. I.; Kagami, H.; Ueda, M.; Kobayashi, T. Tissue engineering using magnetite nanoparticles and magnetic force: Heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng. 2004, 10, 833–840.

15

Ito, A.; Hibino, E.; Kobayashi, C.; Terasaki, H.; Kagami, H.; Ueda, M.; Kobayashi, T.; Honda, H. Construction and delivery of tissue–engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force. Tissue Eng. 2005, 11, 489–496.

16

Hughes, S.; El Haj, A. J.; Dobson, J. Magnetic micro–and nanoparticle mediated activation of mechanosensitive ion channels. Med. Eng. Phys. 2005, 27, 754–762.

17

Santra, S.; Tapec, R.; Theodoropoulou, N.; Dobson, J.; Hebard, A.; Tan, W. H. Synthesis and characterization of silica–coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir 2001, 17, 2900–2906.

18

Dobson, J. Magnetic nanoparticles for drug delivery. Drug. Dev. Res 2006, 67, 55–60.

19

Singh, N.; Jenkins, G. J. S.; Asadi, R.; Doak, S. H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010, 1, 5358.

20

Wang, L.; Wang, Z. J.; Li, X. M.; Zhang, Y.; Yin, M.; Li, J.; Song, H. Y.; Shi, J. Y.; Ling, D. S.; Wang, L. H. et al. Deciphering active biocompatibility of iron oxide nanoparticles from their intrinsic antagonism. Nano Res. 2018, 11, 2746–2755.

21

Janko, C.; Zaloga, J.; Pöttler, M.; Dürr, S.; Eberbeck, D.; Tietze, R.; Lyer, S.; Alexiou, C. Strategies to optimize the biocompatibility of iron oxide nanoparticles—"SPIONs safe by design". J. Magn. Magn. Mater. 2017, 431, 281–284.

22

Jain, T. K.; Reddy, M. K.; Morales, M. A.; Leslie–Pelecky, D. L.; Labhasetwar, V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 2008, 5, 316–327.

23

Zhao, X. H.; Kim, J.; Cezar, C. A.; Huebsch, N.; Lee, K.; Bouhadir, K.; Mooney, D. J. Active scaffolds for on–demand drug and cell delivery. Proc. Natl. Acad. Sci. USA 2011, 108, 67–72.

24

Kang, T.; Li, F. Y.; Baik, S.; Shao, W.; Ling, D. S.; Hyeon, T. Surface design of magnetic nanoparticles for stimuliresponsive cancer imaging and therapy. Biomaterials 2017, 136, 98–114.

25

Sun, C.; Lee, J. S. H.; Zhang, M. Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug. Deliv. Rev. 2008, 60, 1252–1265.

26

Tian, X.; Zhang, L. C.; Yang, M.; Bai, L.; Dai, Y. H.; Yu, Z. Q.; Pan, Y. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1476.

27

Sapir, Y.; Cohen, S.; Friedman, G.; Polyak, B. The promotion of in vitro vessel–like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials 2012, 33, 4100–4109.

28

Liu, H. X.; Wang, C. Y.; Gao, Q. X.; Liu, X. X.; Tong, Z. Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles. Acta Biomater. 2010, 6, 275–281.

29

Fuhrer, R.; Hofmann, S.; Hild, N.; Vetsch, J. R.; Herrmann, I. K.; Grass, R. N.; Stark, W. J. Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. PLoS One 2013, 8, e81362.

30

Bannerman, A. D.; Li, X. Y.; Wan, W. K. A "degradable" poly(vinyl alcohol) iron oxide nanoparticle hydrogel. Acta Biomater. 2017, 58, 376–385.

31

Ouyang, K.; Zhu, C. H.; Zhao, Y.; Wang, L. C.; Xie, S.; Wang, Q. Adsorption mechanism of magnetically separable Fe3O4/graphene oxide hybrids. Appl. Surf. Sci. 2015, 355, 562–569.

32

Hu, S. H.; Liu, T. Y.; Tsai, C. H.; Chen, S. Y. Preparation and characterization of magnetic ferroscaffolds for tissue engineering. J. Magn. Magn. Mater. 2007, 310, 2871–2873.

33

Hernández, R.; Mijangos, C. In situ synthesis of magnetic iron oxide nanoparticles in thermally responsive alginate–poly (N–isopropylacrylamide) semi–interpenetrating polymer networks. Macromol. Rapid Commun. 2009, 30, 176–181.

34

Wang, Y. L.; Li, B. Q.; Zhou, Y.; Jia, D. C. Chitosan–induced synthesis of magnetite nanoparticles via iron ions assembly. Polym. Adv. Technol. 2008, 19, 1256–1261.

35

Ilg, P. Stimuli–responsive hydrogels cross–linked by magnetic nanoparticles. Soft Matter 2013, 9, 3465–3468.

36

Ekenseair, A. K.; Boere, K. W. M.; Tzouanas, S. N.; Vo, T. N.; Kasper, F. K.; Mikos, A. G. Synthesis and characterization of thermally and chemically gelling injectable hydrogels for tissue engineering. Biomacromolecules 2012, 13, 1908–1915.

37

Bock, N.; Riminucci, A.; Dionigi, C.; Russo, A.; Tampieri, A.; Landi, E.; Goranov, V. A.; Marcacci, M.; Dediu, V. A novel route in bone tissue engineering: Magnetic biomimetic scaffolds. Acta Biomater. 2010, 6, 786–796.

38

Wahl, D.; Czernuszka, J. Collagen–hydroxyapatite composites for hard tissue repair. Eur. Cells Mater. 2006, 11, 43–56.

39

Muschler, G. F.; Nakamoto, C.; Griffith, L. G. Engineering principles of clinical cell–based tissue engineering. J. Bone Joint Surg. Am. 2004, 86–A, 1541–1558.

40

Orr, A. W.; Helmke, B. P.; Blackman, B. R.; Schwartz, M. A. Mechanisms of mechanotransduction. Dev. Cell 2006, 10, 11–20.

41
Silva, E. D.; Gon?alves, A. I.; Santos, L. J.; Rodrigues, M. T.; Gomes, M. E. Magnetic–responsive materials for tissue engineering and regenerative medicine. In Smart Materials for Tissue Engineering: Fundamental Principles; Wang, Q., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2017.https://doi.org/10.1039/9781782626756-00491
42

Glogauer, M.; Ferrier, J.; McCulloch, C. Magnetic fields applied to collagen–coated ferric oxide beads induce stretchactivated Ca2+ flux in fibroblasts. Am. J. Physiol. 1995, 269, C1093–C1104.

43

Glogauer, M.; Ferrier, J. A new method for application of force to cells via ferric oxide beads. Pflügers Arch. 1997, 435, 320–327.

44

Pommerenke, H.; Schreiber, E.; Dürr, F.; Nebe, B.; Hahnel, C.; Möller, W.; Rychly, J. Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur. J. Cell Biol. 1996, 70, 157–164.

45

Plouffe, B. D.; Lewis, L. H.; Murthy, S. K. Computational design optimization for microfluidic magnetophoresis. Biomicrofluidics 2011, 5, 013413.

46

Lewis, L. H.; Barua, R.; Lejeune, B. Developing magnetofunctionality: Coupled structural and magnetic phase transition in AlFe2B2. J. Alloys Compd. 2015, 650, 482–488.

47

McCain, M. L.; Parker, K. K. Mechanotransduction: The role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch. 2011, 462, 89–104.

48

Nava, M. M.; Raimondi, M. T.; Pietrabissa, R. Controlling self–renewal and differentiation of stem cells via mechanical cues. J. Biomed. Biotechnol. 2012, 2012, 797410.

49

Henstock, J. R.; Rotherham, M.; Rashidi, H.; Shakesheff, K. M.; El Haj, A. J. Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: Applications for injectable cell therapy. Stem Cells Transl. Med. 2014, 3, 1363–1374.

50

Lee, K. M.; Tsai, K. Y.; Wang, N.; Ingber, D. E. Extracellular matrix and pulmonary hypertension: Control of vascular smooth muscle cell contractility. Am. J. Physiol. 1998, 274, H76–H82.

51

Sapir–Lekhovitser, Y.; Rotenberg, M. Y.; Jopp, J.; Friedman, G.; Polyak, B.; Cohen, S. Magnetically actuated tissue engineered scaffold: Insights into mechanism of physical stimulation. Nanoscale 2016, 8, 3386–3399.

52

Hughes, S.; McBain, S.; Dobson, J.; El Haj, A. J. Selective activation of mechanosensitive ion channels using magnetic particles. J. Roy. Soc. Interface 2008, 5, 855–863.

53

Li, J. Y.; Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071.

54

Bettini, S.; Bonfrate, V.; Syrgiannis, Z.; Sannino, A.; Salvatore, L.; Madaghiele, M.; Valli, L.; Giancane, G. Biocompatible collagen paramagnetic scaffold for controlled drug release. Biomacromolecules 2015, 16, 2599–2608.

55

Peters, C.; Hoop, M.; Pané, S.; Nelson, B. J.; Hierold, C. Degradable magnetic composites for minimally invasive interventions: Device fabrication, targeted drug delivery, and cytotoxicity tests. Adv. Mater. 2016, 28, 533–538.

56

Lu, Y.; Sun, W. J.; Gu, Z. Stimuli–responsive nanomaterials for therapeutic protein delivery. J. Control. Release 2014, 194, 1–19.

57

Di, J.; Yu, J. C.; Wang, Q.; Yao, S. S.; Suo, D. J.; Ye, Y. Q.; Pless, M.; Zhu, Y.; Jing, Y.; Gu, Z. Ultrasound–triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Res. 2017, 10, 1393–1402.

58

Miyata, T.; Uragami, T.; Nakamae, K. Biomolecule–sensitive hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 79–98.

59

Veiseh, O.; Tang, B. C.; Whitehead, K. A.; Anderson, D. G.; Langer, R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 2015, 14, 45–57.

60

Chan, A.; Orme, R. P.; Fricker, R. A.; Roach, P. Remote and local control of stimuli responsive materials for therapeutic applications. Adv. Drug Deliv. Rev. 2013, 65, 497–514.

61

Kost, J.; Noecker, R.; Kunica, E.; Langer, R. Magnetically controlled release systems: Effect of polymer composition. J. Biomed. Mater. Res. 1985, 19, 935–940.

62

Kost, J.; Wolfrum, J.; Langer, R. Magnetically enhanced insulin release in diabetic rats. J. Biomed. Mater. Res. 1987, 21, 1367–1373.

63

Saslawski, O.; Weingarten, C.; Benoit, J. P.; Couvreur, P. Magnetically responsive microspheres for the pulsed delivery of insulin. Life Sci. 1988, 42, 1521–1528.

64
Saslawski, O.; Couvreur, P.; Peppas, N. Alginate magnetic release systems: Crosslinked structure, swelling and release studies. In Proceedings of the International Symposium on Controlled Release of Bioactive Materials, Basel, Switzerland, 1988, pp 46.
65

Casolaro, M.; Casolaro, I. Pulsed release of antidepressants from nanocomposite hydrogels. Biol., Eng. Med. 2017, 2, 1–8.

66

Kara, M. O. P.; Ekenseair, A. K. Free epoxide content mediates encapsulated cell viability and activity through protein interactions in a thermoresponsive, in situ forming hydrogel. Biomacromolecules 2017, 18, 1473–1481.

67

Rewar, S.; Bansal, B. K.; Singh, C. J.; Sharma, A. K. Pulsatile drug delivery release technologies: An overview. Int. J. Res. Dev. Pharm. Life Sci. 2015, 4, 1386–1393.

68

Hu, R.; Zheng, H.; Cao, J.; Davoudi, Z.; Wang, Q. Selfasfsembled hyaluronic acid nanoparticles for pH–sensitive release of doxorubicin: Synthesis and in vitro characterization. J. Biomed. Nanotechnol. 2017, 13, 1058–1068.

69

Zheng, H.; Yin, L. Q.; Zhang, X. Q.; Zhang, H.; Hu, R.; Yin, Y. H.; Qiu, T.; Xiong, X.; Wang, Q. Redox sensitive shell and core crosslinked hyaluronic acid nanocarriers for tumor–targeted drug delivery. J. Biomed. Nanotechnol. 2016, 12, 1641–1653.

70

Hu, R.; Zheng, H.; Cao, J.; Davoudi, Z.; Wang, Q. Synthesis and in vitro characterization of carboxymethyl chitosan–CBA–doxorubicin conjugate nanoparticles as pH–sensitive drug delivery systems. J. Biomed. Nanotechnol. 2017, 13, 1097–1105.

71

Zhang, X. Q; Zhang, H.; Yin, L. Q.; Hu, R.; Qiu, T.; Yin, Y. H.; Xiong, X.; Zheng, H.; Wang, Q. A pH–sensitive nanosystem based on carboxymethyl chitosan for tumortargeted delivery of daunorubicin. J. Biomed. Nanotechnol. 2016, 12, 1688–1698.

72

Chang, B. S.; Sha, X. Y.; Guo, J.; Jiao, Y. F.; Wang, C. C.; Yang, W. L. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J. Mater. Chem. 2011, 21, 9239–9247.

73

Xie, W. S.; Gao, Q.; Guo, Z. H.; Wang, D.; Gao, F.; Wang, X. M.; Wei, Y.; Zhao, L. Y. Injectable and self–healing thermosensitive magnetic hydrogel for asynchronous control release of doxorubicin and docetaxel to treat triple–negative breast cancer. ACS Appl. Mater. Inter. 2017, 9, 33660–33673.

74

Meenach, S. A.; Shapiro, J. M.; Hilt, J. Z.; Anderson, K. W. Characterization of PEG–iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery. J. Biomat. Sci., Polym. E 2013, 24, 1112–1126.

75

Sneed, P. K.; Stauffer, P. R.; McDermott, M. W.; Diederich, C. J.; Lamborn, K. R.; Prados, M. D.; Chang, S.; Weaver, K. A.; Spry, L.; Malec, M. K. et al. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost ± hyperthermia for glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 1998, 40, 287–295.

76

Falk, M. H.; Issels, R. D. Hyperthermia in oncology. Int. J. Hyperther. 2001, 17, 1–18.

77

Markides, H.; McLaren, J. S.; El Haj, A. J. Overcoming translational challenges—The delivery of mechanical stimuli in vivo. Int. J. Biochem. Cell Biol. 2015, 69, 162–172.

78

Meng, J.; Xiao, B.; Zhang, Y.; Liu, J.; Xue, H. D.; Lei, J.; Kong, H.; Huang, Y. G.; Jin, Z. Y.; Gu, N. et al. Superparamagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci. Rep. 2013, 3, 2655.

79

Sun, Y. B.; Chen, C. S.; Fu, J. P. Forcing stem cells to behave: A biophysical perspective of the cellular microenvironment. Ann. Rev. Biophys. 2012, 41, 519–542.

80

Xu, H. Y.; Gu, N. Magnetic responsive scaffolds and magnetic fields in bone repair and regeneration. Front. Mater. Sci. 2014, 8, 20–31.

81

Zhang, H.; Xia, J. Y.; Pang, X. L.; Zhao, M.; Wang, B. Q.; Yang, L. L.; Wan, H. S.; Wu, J. B.; Fu, S. Z. Magnetic nanoparticle–loaded electrospun polymeric nanofibers for tissue engineering. Mater. Sci. Eng. : C 2016, 73, 537–543.

82

Panseri, S.; Russo, A.; Giavaresi, G.; Sartori, M.; Veronesi, F.; Fini, M.; Salter, D.; Ortolani, A.; Strazzari, A.; Visani, A. et al. Innovative magnetic scaffolds for orthopedic tissue engineering. J. Biomed. Mater. Res. A 2012, 100, 2278–2286.

83

Hajinasab, A.; Saber–Samandari, S.; Ahmadi, S.; Alamara, K. Preparation and characterization of a biocompatible magnetic scaffold for biomedical engineering. Mater. Chem. Phys. 2018, 204, 378–387.

84

Harvey, E. J.; Giannoudis, P. V.; Martineau, P. A.; Lansdowne, J. L.; Dimitriou, R.; Moriarty, T. F.; Richards, R. G. Preclinical animal models in trauma research. J. Orthop. Trauma 2011, 25, 488–493.

85

Park, H.; Temenoff, J. S.; Holland, T. A.; Tabata, Y.; Mikos, A. G. Delivery of TGF–β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 2005, 26, 7095–7103.

86

Levenberg, S.; Rouwkema, J.; Macdonald, M.; Garfein, E. S.; Kohane, D. S.; Darland, D. C.; Marini, R.; van Blitterswijk, C. A.; Mulligan, R. C.; D'Amore, P. A. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 2005, 23, 879–884.

87

Sun, T.; Shi, Q.; Huang, Q.; Wang, H. P.; Xiong, X. L.; Hu, C. Z.; Fukuda, T. Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular–like structures. Acta Biomater. 2018, 66, 272–281.

88

Liu, Y. Q.; Xu, K. G.; Chang, Q.; Darabi, M. A.; Lin, B. J.; Zhong, W.; Xing, M. Highly flexible and resilient elastin hybrid cryogels with shape memory, injectability, conductivity, and magnetic responsive properties. Adv. Mater. 2016, 28, 7758–7767.

89

Bonfrate, V.; Manno, D.; Serra, A.; Salvatore, L.; Sannino, A.; Buccolieri, A.; Serra, T.; Giancane, G. Enhanced electrical conductivity of collagen films through long–range aligned iron oxide nanoparticles. J. Colloid Interf. Sci. 2017, 501, 185–191.

90
Steele, L.; Margolis, G.; Cohen, S.; Polyak, B. Applications of magnetic–responsive materials for cardiovascular tissue engineering. In Smart Materials for Tissue Engineering: Applications; Wang, Q., Ed.; The Royal Society of Chemistry: London, UK, 2017.
91

Antman–Passig, M.; Shefi, O. Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett. 2016, 16, 2567–2573.

92

Zrinyi, M. Intelligent polymer gels controlled by magnetic fields. Colloid Polym. Sci. 2000, 278, 98–103.

93

Szabó, D.; Szeghy, G.; Zrínyi, M. Shape transition of magnetic field sensitive polymer gels. Macromolecules 1998, 31, 6541–6548.

94

Zrínyi, M.; Szabó, D.; Kilian, H. G. Kinetics of the shape change of magnetic field sensitive polymer gels. Polym. Gels Netw. 1998, 6, 441–454.

95

Satarkar, N. S.; Hilt, J. Z. Hydrogel nanocomposites as remote–controlled biomaterials. Acta Biomater. 2008, 4, 11–16.

96

Farshad, M.; Le Roux, M. Compression properties of magnetostrictive polymer composite gels. Polym. Test. 2005, 24, 163–168.

97

Zhou, Y. X.; Sharma, N.; Deshmukh, P.; Lakhman, R. K.; Jain, M.; Kasi, R. M. Hierarchically structured free–standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross–linkers. J. Am. Chem. Soc. 2012, 134, 1630–1641.

Nano Research
Pages 5049-5064
Cite this article:
Adedoyin AA, Ekenseair AK. Biomedical applications of magneto-responsive scaffolds. Nano Research, 2018, 11(10): 5049-5064. https://doi.org/10.1007/s12274-018-2198-2
Part of a topical collection:

951

Views

75

Crossref

N/A

Web of Science

77

Scopus

0

CSCD

Altmetrics

Received: 25 May 2018
Revised: 05 September 2018
Accepted: 06 September 2018
Published: 14 September 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return