Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Transition-metal phosphides, as the promising alternatives to noble metal catalysts, have been widely used as efficient electrocatalysts for hydrogen evolution reaction (HER). In this work, three kinds of cobalt-8-hydroxyquinoline (Coqx) with different size and nanostructures are synthesized by varying the hydrothermal conditions, which was named as Coqx-L, Coqx-M and Coqx-S according to the decreased size. Accordingly, the CoxP/NC with three different size nanostructures (CoxP/NC-L, CoxP/NC-M and CoxP/NC-S) are obtained by the sequential carbonization and phosphidation of Coqx. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results imply the identical chemical composition in these catalysts with different morphologies. Thus, systematic study is carried out to reveal the relationship between catalytic performance and morphologies of materials with the same chemical composition. The experimental result indicates that the morphology of CoxP/NC plays a crucial role on the surface area and electron transfer. Finally, the catalyst of CoxP/NC-S with the smallest size nanostructrue exhibits the best HER performance with a low overpotential at current density of 10 mA/cm2 (η = 56.9 and 115.6 mV) and a small Tafel slope (52.3 and 69.3 mV/dec) in both 0.1 M HClO4 and 1.0 M KOH as well as long-term stability.
Habas, S. E.; Platt, H. A. S.; Van Hest, M. F. A. M.; Ginley, D. S. Low-cost inorganic solar cells: From ink to printed device. Chem. Rev. 2010, 110, 6571-6594.
Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245-1251.
Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. , Int. Ed. 2015, 54, 14031-14035.
Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B. J. M.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T. P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.
Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972-974.
Wu, Y. Y.; Li, G. D.; Liu, Y. P.; Yang, L.; Lian, X. R.; Asefa, T.; Zou, X. X. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 2016, 26, 4839-4847.
Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. , Int. Ed. 2015, 54, 52-65.
Parkinson, G. S.; Novotný, Z.; Jacobson, P.; Schmid, M.; Diebold, U. Room temperature water splitting at the surface of magnetite. J. Am. Chem. Soc. 2011, 133, 12650-12655.
Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474-6502.
Bai, S.; Wang, C. M.; Deng, M. S.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. J. Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures. Angew. Chem. , Int. Ed. 2014, 53, 12120-12124.
Anantharaj, S.; Karthik, P. E.; Subramanian, B.; Kundu, S. Pt nanoparticle anchored molecular self-assemblies of DNA: An extremely stable and efficient HER electrocatalyst with ultralow Pt content. ACS Catal. 2016, 6, 4660-4672.
Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850-855.
Wu, Z. X.; Guo, J. P.; Wang, J.; Liu, R.; Xiao, W. P.; Xuan, C. J.; Xia, K. D.; Wang, D. L. Hierarchically porous electrocatalyst with vertically aligned defect-rich CoMoS nanosheets for the hydrogen evolution reaction in an alkaline medium. ACS Appl. Mater. Interfaces 2017, 9, 5288-5294.
Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215-230.
Wan, J.; Yao, X.; Gao, X.; Xiao, X.; Li, T. Q.; Wu, J. B.; Sun, W. M.; Hu, Z. M.; Yu, H. M.; Huang, L. et al. Microwave combustion for modification of transition metal oxides. Adv. Funct. Mater. 2016, 26, 7263-7270.
Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186-19192.
Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem. , Int. Ed. 2016, 55, 8670-8674.
Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. , Int. Ed. 2014, 53, 5427-5430.
Tabassum, H.; Guo, W. H.; Meng, W.; Mahmood, A.; Zhao, R.; Wang, Q. F.; Zou, R. Q. Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv. Energy Mater. 2017, 7, 1601671.
Xiao, P.; Chen, W.; Wang, X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2015, 5, 1500985.
Feng, J. X.; Xu, H.; Dong, Y. T.; Lu, X. F.; Tong, Y. X.; Li, G. R. Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew. Chem. , Int. Ed. 2017, 56, 2960-2964.
Feng, J. X.; Wu, J. Q.; Tong, Y. X.; Li, G. R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. 2018, 140, 610-617.
Feng, J. X.; Tong, S. Y.; Tong, Y. X.; Li, G. R. Pt-like hydrogen evolution electrocatalysis on PANI/CoP hybrid nanowires by weakening the shackles of hydrogen ions on the surfaces of catalysts. J. Am. Chem. Soc. 2018, 140, 5118-5126.
Yang, F. L.; Chen, Y. T.; Cheng, G. Z.; Chen, S. L.; Luo, W. Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal. 2017, 7, 3824-3831.
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
Liu, Q.; Tian, J. Q.; Cui, W.; Jiang, P.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. , Int. Ed. 2014, 53, 6710-6714.
Yang, Y.; Fei, H. L.; Ruan, G. D.; Tour, J. M. Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv. Mater. 2015, 27, 3175-3180.
Yang, X. L.; Lu, A. Y.; Zhu, Y. H.; Hedhili, M. N.; Min, S. X.; Huang, K. W.; Han, Y.; Li, L. J. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. Nano Energy 2015, 15, 634-641.
Zhang, X. Y.; Gu, W. L.; Wang, E. K. Self-supported ternary Co0.5Mn0.5P/carbon cloth (CC) as a high-performance hydrogen evolution electrocatalyst. Nano Res. 2017, 10, 1001-1009.
Zhang, X. Y.; Gu, W. L.; Wang, E. K. Wire-on-flake heterostructured ternary Co0.5Ni0.5P/CC: An efficient hydrogen evolution electrocatalyst. J. Mater. Chem. A 2017, 5, 982-987.
Li, J. Y.; Yan, M.; Zhou, X. M.; Huang, Z. Q.; Xia, Z. M.; Chang, C. R.; Ma, Y. Y.; Qu, Y. Q. Mechanistic insights on ternary Ni2-xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Adv. Funct. Mater. 2016, 26, 6785- 6796.
Tang, C.; Gan, L. F.; Zhang, R.; Lu, W. B.; Jiang, X. E; Asiri, A. M.; Sun, X. P.; Wang, J.; Chen, L. Ternary FexCo1-xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: Experimental and theoretical insight. Nano Lett. 2016, 16, 6617-6621.
Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy- efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 2017, 7, 1700020.
Gu, W. L.; Gan, L. F.; Zhang, X. Y.; Wang, E. K.; Wang, J. Theoretical designing and experimental fabricating unique quadruple multimetallic phosphides with remarkable hydrogen evolution performance. Nano Energy 2017, 34, 421-427.
Jiang, P.; Liu, Q.; Ge, C. J.; Cui, W.; Pu, Z. H.; Asiribc, A. M.; Sun, X. P. CoP nanostructures with different morphologies: Synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. J. Mater. Chem. A, 2014, 2, 14634-14640.
Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143-14149.
Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010-5016.
Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem. , Int. Ed. 2015, 54, 2100-2104.
Yang, Y.; Lun, Z. Y.; Xia, G. L.; Zheng, F. C.; He, M. N.; Chen, Q. W. Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ. Sci. 2015, 8, 3563-3571.
Zhang, Z.; Hao, J. H.; Yang, W. S.; Tang, J. L. Defect-rich CoP/nitrogen- doped carbon composites derived from a metal-organic framework: High-performance electrocatalysts for the hydrogen evolution reaction. ChemCatChem 2015, 7, 1920-1925.
Huang, Y.; Gong, Q. F.; Song, X. N.; Feng, K.; Nie, K. Q.; Zhao, F. P.; Wang, Y. Y.; Zeng, M.; Zhong, J.; Li, Y. G. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 2016, 10, 11337-11343.
Yang, W. X.; Liu, X. J.; Yue, X. Y.; Jia, J. B.; Guo, S. J. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436-1439.
Conway, B. E.; Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 2002, 47, 3571-3594.
Pentland, N.; Bockris, J. O.; Sheldon, E. Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron. J. Electrochem. Soc. 1957, 104, 182-194.
Peng, Z.; Jia, D. S.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. F. From water oxidation to reduction: Homologous Ni-Co based nanowires as complementary water splitting electrocatalysts. Adv. Energy Mater. 2015, 5, 1402031.
Xu, J.; Cui, J. B.; Guo, C.; Zhao, Z. P.; Jiang, R.; Xu, S. Y.; Zhuang, Z. B.; Huang, Y.; Wang, L. Y.; Li, Y. D. Ultrasmall Cu7S4@MoS2 hetero-nanoframes with abundant active edge sites for ultrahigh-performance hydrogen evolution. Angew. Chem. , Int. Ed. 2016, 55, 6502-6505.
Zhang, H. B.; Ma, Z. J.; Duan, J. J.; Liu, H. M.; Liu, G. G.; Wang, T.; Chang, K.; Li, M.; Shi, L.; Meng, X. G. et al. Active sites implanted carbon cages in core-shell architecture: Highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 2016, 10, 684-694.
Gong, Q. F.; Cheng, L.; Liu, C. H.; Zhang, M.; Feng, Q. L.; Ye, H. L.; Zeng, M.; Xie, L. M.; Liu, Z.; Li, Y. G. Ultrathin MoS2(1-x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 2015, 5, 2213-2219.
Gao, X. H.; Zhang, H. X.; Li, Q. G.; Yu, X. G.; Hong, Z. L.; Zhang, X. W.; Liang, C. D.; Lin, Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem. , Int. Ed. 2016, 55, 6290-6294.
Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 2016, 10, 2342-2348.
You, B.; Jiang, N.; Sheng, M. L.; Gul, S.; Yano, J.; Sun, Y. J. High-performance overall water splitting electrocatalysts derived from cobalt-based metal- organic frameworks. Chem. Mater. 2015, 27, 7636-7642.