AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

The lithium and sodium storage performances of phosphorus and its hierarchical structure

Dan ZhaoLihui ZhangChengcheng FuJinying Zhang( )Chunming Niu
Center of Nanomaterials for Renewable Energy,State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University,Xi'an,710054,China;
Show Author Information

Graphical Abstract

Abstract

Recent preparation of black phosphorene and subsequent discovery of its excellent optical and electronic properties have attracted great attention, and renewed interest to phosphorus. Recent researches have indicated that phosphorus structures are promising anodes for lithium-ion and sodium-ion batteries. A high theoretical capacity of 2, 596 mAh·g-1 was predicted for phosphorus according to the reaction of 3Li/Na + P → Li3P/Na3P. However, fast capacity degradation is accompanying with most phosphorus structures due to the low electronic conductivity and structural pulverization induced by large volume change in charging and discharging proceses. The electrochemical performances are significantly affected by the hierarchical structural design of phosphorus. A few reviews of phosphorus structures have been reported recently. However, no review about the electrochemical performances of phosphorus structures according to their hierarchical structures has been reported. First of all, phosphrus allotropes along with their structure and fundamental properties are briefly reviewed in this work. Secondly, the studies on lithiation/sodiation mechanism of red/black phosphorus are presented. Thirdly, a summary about the electrochemical performances of red/black phosphorus composites with different hierarchical structures is presented. Furthermore, the development challenges and future perspectives of phosphorus structures as anodes for LIBs and SIBs are discussed.

References

1

Ruck, M.; Hoppe, D.; Wahl, B.; Simon, P.; Wang, Y. K.; Seifert, G. Fibrous red phosphorus. Angew. Chem. , Int. Ed. 2005, 44, 7616-7619.

2

Zhao, D.; Zhang, J. Y.; Fu, C. C.; Huang, J. L.; Xiao, D. B.; Yuen, M. M. F.; Niu, C. M. Enhanced cycling stability of ring-shaped phosphorus inside multi-walled carbon nanotubes as anodes for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 2540-2548.

3

Bachhuber, F.; von Appen, J.; Dronskowski, R.; Schmidt, P.; Nilges, T.; Pfitzner, A.; Weihrich, R. Van der Waals interactions in selected allotropes of phosphorus. Z. Krist. -Cryst. Mater. 2015, 230, 107-115.

4

Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732-2743.

5

Xue, Y. H.; Zhang, Q.; Zhang, T.; Fu, L. Black phosphorus: Properties, synthesis, and applications in energy conversion and storage. ChemNanoMat 2017, 3, 352-361.

6

Shen, Z. R.; Sun, S. T.; Wang, W. J.; Liu, J. W.; Liu, Z. F.; Yu, J. C. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis. J. Mater. Chem. A 2015, 3, 3285-3288.

7

Zhao, S. J.; Kang, W.; Xue, J. M. The potential application of phosphorene as an anode material in Li-ion batteries. J. Mater. Chem. A 2014, 2, 19046-19052.

8

Li, W. F.; Yang, Y. M.; Zhang, G.; Zhang, Y. W. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 2015, 15, 1691-1697.

9

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

10

Liu, Y. H.; Yu, X. Y.; Fang, Y. J.; Zhu, X. S.; Bao, J. C.; Zhou, X. S.; Lou, X. W. Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule 2018, 2, 725-735.

11

Xu, X.; Dou, Z. F.; Gu, E. L.; Si, L.; Zhou, X. S.; Bao, J. C. Uniformly- distributed Sb nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible sodium storage. J. Mater. Chem. A 2017, 5, 13411-13420.

12

Zhao, X. S.; Yu, L.; Yu, X. Y.; Luo, X. W. Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Adv. Energy Mater. 2016, 6, 1601177.

13
Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater., in press, DOI: 10.1007/s40843-018-9324-0.https://doi.org/10.1007/s40843-018-9324-0
14

Fan, X. L.; Mao, J. F.; Zhu, Y. J.; Luo, C.; Suo, L. M.; Gao, T.; Han, F. D.; Liou, S. C.; Wang, C. S. Superior stable self-healing SnP3 Anode for sodium-ion batteries. Adv. Energy Mater. 2015, 5, 1500174.

15

Kim, S. O.; Manthiram, A. Phosphorus-rich CuP2 embedded in carbon matrix as a high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 16221-16227.

16

Marino, C.; Debenedetti, A.; Fraisse, B.; Favier, F.; Monconduit, L. Activated-phosphorus as new electrode material for Li-ion batteries. Electrochem. Commun. 2011, 13, 346-349.

17

Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling- stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931-8933.

18

Mayo, M.; Griffith, K. J.; Pickard, C. J.; Morris, A. J. Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries. Chem. Mater. 2016, 28, 2011-2021.

19

Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 2014, 26, 4139-4144.

20

Qian, J. F.; Xiong, Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Synergistic Na- storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett. 2014, 14, 1865-1869.

21

Li, W. J.; Chou, S. L.; Wang, J. Z.; Kim, J. H.; Liu, H. K.; Dou, S. X. Sn4+ P3 @ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv. Mater. 2014, 26, 4037-4042.

22

Liu, J.; Kopold, P.; Wu, C.; van Aken, P. A.; Maier, J.; Yu, Y. Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 3531-3538.

23

Li, Q.; Li, Z. Q.; Zhang, Z. W.; Li, C. X.; Ma, J. Y.; Wang, C. X.; Ge, X. L.; Dong, S. H.; Yin, L. W. Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv. Energy Mater. 2016, 6, 1600376.

24

Liu, S. L.; Zhang, H. Z.; Xu, L. Q.; Ma, L. B.; Chen, X. X. Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries. J. Power Sources 2016, 304, 346-353.

25

Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. A new, cheap, and productive FeP anode material for sodium-ion batteries. Chem. Commun. 2015, 51, 3682-3685.

26

Yang, Q. R.; Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery. RSC Adv. 2015, 5, 80536-80541.

27

Han, F.; Tan, C. Y. J.; Gao, Z. Q. Improving the specific capacity and cyclability of sodium-ion batteries by engineering a dual-carbon phase- modified amorphous and mesoporous iron phosphide. ChemElectroChem 2016, 3, 1054-1062.

28

Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 2017, 32, 494-502.

29

Li, W. J.; Yang, Q. R.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Cobalt phosphide as a new anode material for sodium storage. J. Power Sources 2015, 294, 627-632.

30

Guo, G. L.; Guo, Y. Y.; Tan, H. T.; Yu, H.; Chen, W. H.; Fong, E.; Yan, Q. Y. From fibrous elastin proteins to one-dimensional transition metal phosphides and their applications. J. Mater. Chem. A 2016, 4, 10893-10899.

31

Ge, X. L.; Li, Z. Q.; Yin, L. W. Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 2017, 32, 117-124.

32

Wu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Adv. Mater. 2017, 29, 1604015.

33

Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019-5027.

34

Zhu, Y. J.; Wen, Y.; Fan, X. L.; Gao, T.; Han, F. D.; Luo, C.; Liou, S. C.; Wang, C. S. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 2015, 9, 3254-3264.

35

Yu, Z. X.; Song, J. X.; Gordin, M. L.; Yi, R.; Tang, D. H.; Wang, D. H. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv. Sci. 2015, 2, 1400020.

36

Botos, A.; Biskupek, J.; Chamberlain, T. W.; Rance, G. A.; Stoppiello, C. T.; Sloan, J.; Liu, Z.; Suenaga, K.; Kaiser, U.; Khlobystov, A. N. Carbon nanotubes as electrically active nanoreactors for multi-step inorganic synthesis: Sequential transformations of molecules to nanoclusters and nanoclusters to nanoribbons. J. Am. Chem. Soc. 2016, 138, 8175-8183.

37

Zoberbier, T.; Chamberlain, T. W.; Biskupek, J.; Suyetin, M.; Majouga, A. G.; Besley, E.; Kaiser, U.; Khlobystov, A. N. Investigation of the interactions and bonding between carbon and group VⅢ metals at the atomic scale. Small 2016, 12, 1649-1657.

38

Li, X.; Wang, Z. Y.; Zhang, J. Y.; Xie, C.; Li, B. B.; Wang, R.; Li, J.; Niu, C. M. Carbon nanotube hybrids with MoS2 and WS2 synthesized with control of crystal structure and morphology. Carbon 2015, 85, 168-175.

39

Allen, C. S.; Liu, G. Q.; Chen, Y. B.; Robertson, A. W.; He, K.; Porfyrakis, K.; Zhang, J.; Briggs, G. A. D.; Warner, J. H. Optically enhanced charge transfer between C60 and single-wall carbon nanotubes in hybrid electronic devices. Nanoscale 2014, 6, 572-580.

40

Zhang, J. Y.; Zhu, Z.; Feng, Y. Q.; Ishiwata, H.; Miyata, Y.; Kitaura, R.; Dahl, J. E. P.; Carlson, R. M. K.; Fokina, N. A.; Schreiner, P. R. et al. Evidence of diamond nanowires formed inside carbon nanotubes from diamantane dicarboxylic acid. Angew. Chem. , Int. Ed. 2013, 125, 3805-3809.

41

del Carmen Gimenez-Lopez, M.; Kurtoglu, A.; Walsh, D. A.; Khlobystov, A. N. Extremely stable platinum-amorphous carbon electrocatalyst within hollow graphitized carbon nanofibers for the oxygen reduction reaction. Adv. Mater. 2016, 28, 9103-9108.

42

Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

43

Peng, L. L.; Zhu, Y.; Chen, D. H.; Ruoff, R. S.; Yu, G. H. Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1600025.

44

Shi, Y.; Zhang, J.; Pan, L. J.; Shi, Y.; Yu, G. H. Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today 2016, 11, 738-762.

45

Shi, Y.; Yu, G. H. Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem. Mater. 2016, 28, 2466-2477.

46

Qiu, M.; Sun, Z. T.; Sang, D. K.; Han, X. G.; Zhang, H.; Niu, C. M. Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 2017, 9, 13384-13403.

47

Qin, X. Y.; Yan, B. Y.; Yu, J.; Jin, J.; Tao, Y.; Mu, C.; Wang, S. C.; Xue, H. G.; Pang, H. Phosphorus-based materials for high-performance rechargeable batteries. Inorg. Chem. Front. 2017, 4, 1424-1444.

48

Pang, J. B.; Bachmatiuk, A.; Yin, Y.; Trzebicka, B.; Zhao, L.; Fu, L.; Mendes, R. G.; Gemming, T.; Liu, Z. F.; Rummeli, M. H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 2018, 8, 1702093.

49

Ansari, S. A.; Khan, Z.; Ansari, M. O.; Cho, M. H. Earth-abundant stable elemental semiconductor red phosphorus-based hybrids for environmental remediation and energy storage applications. RSC Adv. 2016, 6, 44616- 44629.

50

Xia, Q. B.; Li, W. J.; Miao, Z. C.; Chou, S. L.; Liu, H. K. Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Res. 2017, 10, 4055-4081.

51

Ren, X. L.; Lian, P. C.; Xie, D. L.; Yang, Y.; Mei, Y.; Huang, X. R.; Wang, Z. R.; Yin, X. T. Properties, preparation and application of black phosphorus/ phosphorene for energy storage: A review. J. Mater. Sci. 2017, 52, 10364-10386.

52

Zhang, Y.; Zheng, Y.; Rui, K.; Hng, H. H.; Hippalgaonkar, K.; Xu, J. W.; Sun, W. P.; Zhu, J. X.; Yan, Q. Y.; Huang, W. 2D black phosphorus for energy storage and thermoelectric applications. Small 2017, 13, 1700661.

53

Hultgren, R.; Gingrich, N. S.; Warren, B. E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 1935, 3, 351-355.

54

Jamieson, J. C. Crystal structures adopted by black phosphorus at high pressures. Science 1963, 139, 1291-1292.

55

Chen, Z. Y.; Zhu, Y. B.; Lei, J.; Liu, W. Y.; Xu, Y. K.; Feng, P. Z. A stage- by-stage phase-induction and nucleation of black phosphorus from red phosphorus under low-pressure mineralization. CrystEngComm 2017, 19, 7207-7212.

56

Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J. H.; Liu, X. L.; Chen, K. S.; Hersam, M. C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 2015, 9, 3596-3604.

57

Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.

58

Liu, H. W.; Tao, L.; Zhang, Y. Q.; Xie, C.; Zhou, P.; Liu, H. B.; Chen, R.; Wang, S. Y. Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery. ACS Appl. Mater. Interfaces 2017, 9, 36849-36856.

59

Jiang, Q. Q.; Li, J.; Yuan, N. N.; Wu, Z. X.; Tang, J. G. Black phosphorus with superior lithium ion batteries performance directly synthesized by the efficient thermal-vaporization method. Electrochim. Acta 2018, 263, 272-276.

60

Del Rio Castillo, A. E.; Pellegrini, V.; Sun, H. Y.; Buha, J.; Dinh, D. A.; Lago, E.; Ansaldo, A.; Capasso, A.; Manna, L.; Bonaccorso, F. Exfoliation of few-layer black phosphorus in low-boiling-point solvents and its application in Li-ion batteries. Chem. Mater. 2018, 30, 506-516.

61

Shimizu, M.; Tsushima, Y.; Arai, S. Electrochemical Na-insertion/extraction property of Ni-coated black phosphorus prepared by an electroless deposition method. ACS Omega 2017, 2, 4306-4315.

62

Roth, W. L.; DeWitt, T. W.; Smith, A. J. Polymorphism of red phosphorus. J. Am. Chem. Soc. 1947, 69, 2881-2885.

63

Hittorf, W. Zur kenntniss des phosphors. Ann. Phys. Berlin 1865, 202, 193-228.

64

Pfitzner, A.; Bräu, M. F.; Zweck, J.; Brunklaus, G.; Eckert, H. Phosphorus nanorods-two allotropic modifications of a long-known element. Angew. Chem. , Int. Ed. 2004, 43, 4228-4231.

65

Karttunen, A. J.; Linnolahti, M.; Pakkanen, T. A. Icosahedral and ring-shaped allotropes of phosphorus. Chem. -Eur. J. 2007, 13, 5232-5237.

66

Zhang, J. Y.; Zhao, D.; Xiao, D. B.; Ma, C. S.; Du, H. C.; Li, X.; Zhang, L. H.; Huang, J. L.; Huang, H. Y.; Jia, C. L. et al. Assembly of ring-shaped phosphorus within carbon nanotube nanoreactors. Angew. Chem. , Int. Ed. 2017, 56, 1850-1854.

67

Kim, Y. U.; Lee, C. K.; Sohn, H. J.; Kang, T. Reaction mechanism of tin phosphide anode by mechanochemical method for lithium secondary batteries. J. Electrochem. Soc. 2004, 151, A933-A937.

68

Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045-3049.

69

Yabuuchi, N.; Matsuura, Y.; Ishikawa, T.; Kuze, S.; Son, J. Y.; Cui, Y. T.; Oji, H.; Komaba, S. Phosphorus electrodes in sodium cells: Small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemelEctroChem 2014, 1, 580-589.

70

Park, C. M.; Sohn, H. J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 2007, 19, 2465-2468.

71

Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980-985.

72

Xu, G. L.; Chen, Z. H.; Zhong, G. M.; Liu, Y. Z.; Yang, Y.; Ma, T. Y.; Ren, Y.; Zuo, X. B.; Wu, X. H.; Zhang, X. Y. et al. Nanostructured black phosphorus/Ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016, 16, 3955-3965.

73

Subramaniyam, C. M.; Tai, Z. X.; Mahmood, N.; Zhang, D.; Liu, H. K.; Goodenough, J. B.; Dou, S. X. Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries. J. Mater. Chem. A 2017, 5, 1925-1929.

74

Zhang, Y. Y.; Rui, X. H.; Tang, Y. X.; Liu, Y. Q.; Wei, J. Q.; Chen, S.; Leow, W. R.; Li, W. L.; Liu, Y. J.; Deng, J. Y. et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1502409.

75

Zhou, J. B.; Liu, X. Y.; Cai, W. L.; Zhu, Y. C.; Liang, J. W.; Zhang, K. L.; Lan, Y.; Jiang, Z. H.; Wang, G. M.; Qian, Y. T. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv. Mater. 2017, 29, 1700214.

76

Sun, L. Q.; Li, M. J.; Sun, K.; Yu, S. H.; Wang, R. S.; Xie, H. M. Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J. Phys. Chem. C 2012, 116, 14772-14779.

77

Dahbi, M.; Yabuuchi, N.; Fukunishi, M.; Kubota, K.; Chihara, K.; Tokiwa, K.; Yu, X. F.; Ushiyama, H.; Yamashita, K.; Son, J. Y. et al. Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: Investigation of the electrode/electrolyte interface. Chem. Mater. 2016, 28, 1625-1635.

78

Lee, G. H.; Jo, M. R.; Zhang, K.; Kang, Y. M. A reduced graphene oxide- encapsulated phosphorus/carbon composite as a promising anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 2017, 5, 3683-3690.

79

Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/ graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329-6335.

80

Kim, S. O.; Manthiram, A. High-performance red P-based P-TiP2-C nanocomposite anode for lithium-ion and sodium-ion storage. Chem. Mater. 2016, 28, 5935-5942.

81

Walter, M.; Erni, R.; Kovalenko, M. V. Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries. Sci. Rep. 2015, 5, 8418.

82

Kim, S. O.; Manthiram, A. The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP2/C hybrid anode. Chem. Commun. 2016, 52, 4337-4340.

83

Zhao, F. P.; Han, N.; Huang, W. J.; Li, J. J.; Ye, H. L.; Chen, F. J.; Li, Y. G. Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 21754-21759.

84

Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem. , Int. Ed. 2012, 51, 9034-9037.

85

Wang, Y. L.; Tian, L. Y.; Yao, Z. H.; Li, F.; Li, S.; Ye, S. H. Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries. Electrochim. Acta 2015, 163, 71-76.

86

Bai, A. J.; Wang, L.; Li, J. Y.; He, X. M.; Wang, J. X.; Wang, J. L. Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 2015, 289, 100-104.

87

Sun, L.; Zhang, Y.; Zhang, D. Y.; Liu, J. G.; Zhang, Y. H. Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries. Nano Res. 2018, 11, 2733-2745.

88

Li, D. S.; Wang, D. Y.; Rui, K.; Ma, Z. Y.; Xie, L.; Liu, J. H.; Zhang, Y.; Chen, R. F.; Yan, Y.; Lin, H. J. et al. Flexible phosphorus doped carbon nanosheets/nanofibers: Electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries. J. Power Sources 2018, 384, 27-33.

89

Ramireddy, T.; Xing, T.; Rahman, M. M.; Chen, Y.; Dutercq, Q.; Gunzelmann, D.; Glushenkov, A. M. Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 2015, 3, 5572-5584.

90

Xu, Z. W.; Zeng, Y.; Wang, L. Y.; Li, N.; Chen, C.; Li, C. Y.; Li, J.; Lv, H. M.; Kuang, L. Y.; Tian, X. Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries. J. Power Sources 2017, 356, 18-26.

91

Yuan, D. M.; Cheng, J. L.; Qu, G. X.; Li, X. D.; Ni, W.; Wang, B.; Liu, H. Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries. J. Power Sources 2016, 301, 131-137.

92

Chen, L.; Zhou, G. M.; Liu, Z. B.; Ma, X. M.; Chen, J.; Zhang, Z. Y.; Ma, X. L.; Li, F.; Cheng, H. M.; Ren, W. C. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 2016, 28, 510-517.

93

Luo, Z. Z.; Zhang, Y.; Zhang, C. H.; Tan, H. T.; Li, Z.; Abutaha, A.; Wu, X. L.; Xiong, Q.; Khor, K. A.; Hippalgaonkar, K. et al. Multifunctional 0D-2D Ni2P nanocrystals-black phosphorus heterostructure. Adv. Energy Mater. 2017, 7, 1601285.

94

Nagao, M.; Hayashi, A.; Tatsumisago, M. All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode. J. Power Sources 2011, 196, 6902-6905.

95

Liu, H. W.; Zou, Y. Q.; Tao, L.; Ma, Z. L.; Liu, D. D.; Zhou, P.; Liu, H. B.; Wang, S. Y. Sandwiched thin-film anode of chemically bonded black phosphorus/graphene hybrid for lithium-ion battery. Small 2017, 13, 1700758.

96

Du, Y. L.; Ouyang, C. Y.; Shi, S. Q.; Lei, M. S. Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 2010, 107, 093718.

97

Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. , Int. Ed. 2013, 52, 4633-4636.

98

Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013, 13, 5480-5484.

99

Song, J. X.; Yu, Z. X.; Gordin, M. L.; Li, X. L.; Peng, H. S.; Wang, D. H. Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 2015, 9, 11933-11941.

100

Sun, J.; Zheng, G. Y.; Lee, H. W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014, 14, 4573-4580.

101

Zhang, Y.; Wang, H. W.; Luo, Z. Z.; Tan, H. T.; Li, B.; Sun, S. N.; Li, Z.; Zong, Y.; Xu, Z. J.; Yang, Y. H. et al. An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Adv. Energy Mater. 2016, 6, 1600453.

102

Zhang, Y.; Sun, W. P.; Luo, Z. Z.; Zheng, Y.; Yu, Z. W.; Zhang, D.; Yang, J.; Tan, H. T.; Zhu, J. X.; Wang, X. L. et al. Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries. Nano Energy 2017, 40, 576-586.

103

Zhao, D.; Li, B. B.; Zhang, J. Y.; Li, X.; Xiao, D. B.; Fu, C. C.; Zhang, L. H.; Li, Z. H.; Li, J.; Cao, D. X. et al. A hierarchical phosphorus nanobarbed nanowire hybrid: Its structure and electrochemical properties. Nano Lett. 2017, 17, 3376-3382.

104

Shen, Z. R.; Hu, Z. F.; Wang, W. J.; Lee, S. F.; Chan, D. K. L.; Li, Y. C.; Gu, T.; Yu, J. C. Crystalline phosphorus fibers: Controllable synthesis and visible-light-driven photocatalytic activity. Nanoscale 2014, 6, 14163-14167.

105

Zhao, D.; Zhang, L. H.; Fu, C. C.; Huang, J. L.; Huang, H. Y.; Li, Z. H.; Zhang, J. Y.; Niu, C. M. Hierarchical phosphorus hybrids with carbon nanotube veins and black phosphorus skins: Structure and lithium storage properties. Carbon 2018, 139, 1057-1062.

106

Zhang, C.; Wang, X.; Liang, Q. F.; Liu, X. Z.; Weng, Q. H.; Liu, J. W.; Yang, Y. J.; Dai, Z. H.; Ding, K. J.; Bando, Y. et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 2016, 16, 2054-2060.

107

Pei, L. K.; Zhao, Q.; Chen, C. C.; Liang, J.; Chen, J. Phosphorus nanoparticles encapsulated in graphene scrolls as a high-performance anode for sodium-ion batteries. ChemElectroChem 2015, 2, 1652-1655.

108

Sun, J.; Lee, H. W.; Pasta, M.; Sun, Y. M.; Liu, W.; Li, Y. B.; Lee, H. R.; Liu, N.; Cui, Y. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Mater. 2016, 4, 130-136.

109

Li, W. H.; Yang, Z. Z.; Jiang, Y.; Yu, Z. R.; Gu, L.; Yu, Y. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon 2014, 78, 455-462.

110

Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546-1553.

111

Xu, T.; Li, D. H.; Chen, S.; Sun, Y. Y.; Zhang, H. W.; Xia, Y. Z.; Yang, D. J. Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage. Chem. Eng. J. 2018, 345, 604-610.

112

Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.

113

Gao, H.; Zhou, T. F.; Zheng, Y.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1601037.

114

Yao, S. S.; Cui, J.; Huang, J. Q.; Huang, J. Q.; Chong, W. G.; Qin, L.; Mai, Y. W.; Kim, J. K. Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702267.

115

Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067-2081.

116

Xu, J.; Ding, J. N.; Zhu, W. J.; Zhou, X. S.; Ge, S. H.; Yuan, N. Y. Nano- structured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries. Sci. China Mater. 2018, 61, 371-381.

117

Liu, S.; Feng, J. K.; Bian, X. F.; Liu, J.; Xu, H.; An, Y. L. A controlled red phosphorus@Ni-P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1222-1233.

Nano Research
Pages 1-17
Cite this article:
Zhao D, Zhang L, Fu C, et al. The lithium and sodium storage performances of phosphorus and its hierarchical structure. Nano Research, 2019, 12(1): 1-17. https://doi.org/10.1007/s12274-018-2206-6
Topics:

1042

Views

45

Crossref

N/A

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 27 June 2018
Revised: 26 August 2018
Accepted: 13 September 2018
Published: 15 October 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return