AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High performance octahedral PtNi/C catalysts investigated from rotating disk electrode to membrane electrode assembly

Bing Li1,§Jue Wang1,§Xin Gao2Congwei Qin1Daijun Yang1Hong Lv1Qiangfeng Xiao1( )Cunman Zhang1( )
School of Automotive Studies & Clean Energy Automotive Engineering Center,Tongji University (Jiading Campus), 4800 Cao'an Road,Shanghai,201804,China;
Department of Energy Technology,Aalborg University, Pontoppidanstraede 101,Aalborg,9220,Denmark;

§Bing Li and Jue Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Octahedral PtNi/C catalysts have demonstrated superior catalytic performance in oxygen reduction reaction (ORR) over commercial Pt/C with rotating disk electrode (RDE). However, it is not trivial to translate such promising results to real-world membrane-electrode assembly (MEA). In this work, we have synthesized octahedral PtNi/C catalysts using poly(diallyldimethylammonium chloride) (PDDA) as a capping agent and investigated their performance from RDE to MEA. In RDE, mass activity and specific activity of the optimized octahedral PtNi/C catalyst for oxygen reduction reaction (ORR) are nearly 19 and 28 times high of the state-of-the-art commercial Pt/C, respectively. At MEA level, the octahedral PtNi/C catalyst exhibits excellent power generation performance and durability paired with commercial Pt/C anode. Its cell voltage at 1, 000 mA·cm−2 reaches 0.712 V, and maximum power density is 881.6 mW·cm−2 and its performance attenuation is also less, around 11.8% and 7% under galvanostatic condition of 1, 000 mA·cm−2 for 100 h. Such results are investiaged by thermodynamic analysis and fundametal performance modeling, which indicate the single cell performance can be further improved by reducing the size of PtNi/C catalyst agglomerates. Such encouraging results have demonstrated the feasibility to convey the superior performance of octahedral PtNi/C from RDE to MEA.

Electronic Supplementary Material

Download File(s)
12274_2018_2211_MOESM1_ESM.pdf (4.7 MB)

References

1

Colón-Mercado, H. R.; Popov, B. N. Stability of platinum based alloy cathode catalysts in PEM fuel cells. J. Power Sources 2006, 155, 253–263.

2

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

3

Larminie, J.; Dicks, A. Fuel Cell Systems Explained, 2nd ed, London, UK: Wiley, 2003.

4

Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.

5

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1443.

6

Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

7

Shao, Y. Y.; Cheng, Y. W.; Duan, W. T.; Wang, W.; Lin, Y. H.; Wang, Y.; Liu, J. Nanostructured electrocatalysts for PEM fuel cells and redox flow batteries: A selected review. ACS Catal. 2015, 5, 7288–7298.

8

Wang, J.; Li, B.; Yersak, T.; Yang, D. J.; Xiao, Q. F.; Zhang, J. L.; Zhang, C. M. Recent advances in Pt-based octahedral nanocrystals as high performance fuel cell catalysts. J. Mater. Chem. A 2016, 4, 11559–11581.

9

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

10

Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885– 5889.

11

Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

12

Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Zhu, E. B.; Li, M. F.; Duan, X. F.; Huang, Y. A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy Environ. Sci. 2014, 7, 2957–2962.

13

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, M. Y. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

14

Chu, Y. Y.; Wang, Z. B.; Dai, Z.; Gu, D. M.; Yin, G. P. Synthesis of truncated-octahedral Pt-Pd nanocrystals supported on carbon black as a highly efficient catalyst for methanol oxidation. Fuel Cells 2014, 14, 49–55.

15

Dai, L.; Zhao, Y. X.; Chi, Q.; Liu, H. F.; Li, J. L.; Huang, T. Morphological control and evolution of octahedral and truncated trisoctahedral Pt-Au alloy nanocrystals under microwave irradiation. Nanoscale 2014, 6, 9944–9950.

16

Zhang, C. L.; Hwang, S. Y.; Peng, Z. M. Size-dependent oxygen reduction property of octahedral Pt-Ni nanoparticle electrocatalysts. J. Mater. Chem. A 2014, 2, 19778–19787.

17

Zhang, C. L.; Sandorf, W.; Peng, Z. M. Octahedral Pt2CuNi uniform alloy nanoparticle catalyst with high activity and promising stability for oxygen reduction reaction. ACS Catal. 2015, 5, 2296–2300.

18

Prabhuram, J.; Wang, X.; Hui, C. L.; Hsing, I. M. Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications. J. Phys. Chem. B 2003, 107, 11057–11064.

19

Zeng, J.; Zheng, Y. Q.; Rycenga, M.; Tao, J.; Li, Z. Y.; Zhang, Q.; Zhu, Y. M.; Xia, Y. N. Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 2010, 132, 8552–8553.

20

Lim, B.; Xiong, Y. J.; Xia, Y. N. A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew. Chem., Int. Ed. 2007, 119, 9439–9442.

21

Sakamoto, R.; Omichi, K.; Furuta, T.; Ichikawa, M. Effect of high oxygen reduction reaction activity of octahedral PtNi nanoparticle electrocatalysts on proton exchange membrane fuel cell performance. J. Power Sources 2014, 269, 117–123.

22

Gu, W.; Baker, D. R.; Liu, Y.; Gasteiger, H. A. Proton Exchange Membrane Fuel Cell (PEMFC) Down-the-channel Performance Model. In Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability; Vielstich, W.; Gasteiger, H. A.; Yokokawa, H., Eds.; John Wiley & Sons: Chichester, 2009; pp 631–657.

23

Weber, A. Z.; Borup, R. L.; Darling, R. M.; Das, P. K.; Dursch, T. J.; Gu, W. B.; Harvey, D.; Kusoglu, A.; Litster, S.; Mench, M. M. et al. A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J. Electrochem. Soc. 2014, 161, F1254–F1299.

24

Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data; Minnesota: Perkin-Elmer Corporation, 1992.

25

Corcoran, C. J.; Tavassol, H.; Rigsby, M. A.; Bagus, P. S.; Wieckowski, A. Application of XPS to study electrocatalysts for fuel cells. J. Power Sources 2010, 195, 7856–7879.

26

Zhu, S. Y.; Zheng, J. S.; Huang, J.; Dai, N. N.; Li, P.; Zheng, J. P. Fabrication of three-dimensional buckypaper catalyst layer with Pt nanoparticles supported on polyelectrolyte functionalized carbon nanotubes for proton exchange membrane fuel cells. J. Power Sources 2018, 393, 19–31.

27

Lin, G. Y.; Trung. V. N. Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC. J. Electrochem. Soc. 2005, 152, A1942–A1948.

28

Williams, M. V.; Begg, E.; Bonville, L.; Kunz, H. R.; Fenton, J. M. Characterization of gas diffusion layers for PEMFC. J. Electrochem. Soc. 2004, 151, A1173–A1180.

29

Khandelwal, M.; Mench, M. M. Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. J. Power Sources 2006, 161, 1106–1115.

Nano Research
Pages 281-287
Cite this article:
Li B, Wang J, Gao X, et al. High performance octahedral PtNi/C catalysts investigated from rotating disk electrode to membrane electrode assembly. Nano Research, 2019, 12(2): 281-287. https://doi.org/10.1007/s12274-018-2211-9
Topics:

700

Views

46

Crossref

N/A

Web of Science

46

Scopus

2

CSCD

Altmetrics

Received: 14 July 2018
Revised: 02 September 2018
Accepted: 19 September 2018
Published: 13 October 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return