Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T' phase on 4H/fcc-Au nanorods for hydrogen evolution

Zhengqing Liu1,2Xiao Zhang2Yue Gong3,4Qipeng Lu2Zhicheng Zhang2Hongfei Cheng2Qinglang Ma2Junze Chen2Meiting Zhao2Bo Chen2Ye Chen2Xue-Jun Wu2Pengfei Yin2Lin Gu3,4,5()Yaping Du1()Hua Zhang2()
School of Materials Science and Engineering & National Institute for Advanced Materials,Nankai University,Tianjin,300350,China;
Center for Programmable Materials,School of Materials Science and Engineering, Nanyang Technological; University, 50 Nanyang Avenue,Singapore,639798,Singapore;
Beijing National Laboratory for Condensed Matter Physics,Institute of Physics, Chinese Academy of Sciences,Beijing,100190,China;
School of Physical Sciences,University of Chinese Academy of Sciences,Beijing,100190,China;
Collaborative Innovation Center of Quantum Matter,Beijing,100190,China;
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Controlled synthesis of transition metal dichalcogenide (TMD) monolayers with unusual crystal phases has attracted increasing attention due to their promising applications in electrocatalysis. However, the facile and large-scale preparation of TMD monolayers with high-concentration unusual crystal phase still remains a challenge. Herein, we report the synthesis of MoX2 (X = Se or S) monolayers with high-concentration semimetallic 1Tx phase by using the 4H/face-centered cubic (fcc)-Au nanorod as template to form the 4H/fcc-Au@MoX2 nanocomposite. The concentrations of 1Tx phase in the prepared MoSe2 and MoS2 monolayers are up to 86% and 81%, respectively. As a proof-of-concept application, the obtained Au@MoS2 nanocomposite is used for the electrocatalytic hydrogen evolution reaction (HER) in acid medium, exhibiting excellent performance with a low overpotential of 178 mV at the current density of 10 mA/cm2, a small Tafel slope of 43.3 mV/dec, and excellent HER stability. This work paves a way for direct synthesis of TMD monolayers with high-concentration of unusual crystal phase for the electrocatalytic application.

Electronic Supplementary Material

Download File(s)
12274_2018_2212_MOESM1_ESM.pdf (4.1 MB)

References

1

 Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T'-MoS2- and 1T'-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638–643.

2

 Yu, Y. F.; Huang, S. Y.; Li, Y. P.; Steinmann, S. N.; Yang, W. T.; Cao, L. Y. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014, 14, 553–558.

3

 Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

4

 Chang, K.; Hai, X.; Pang, H.; Zhang, H. B.; Shi, L.; Liu, G. G.; Liu, H. M.; Zhao, G. X.; Li, M.; Ye, J. H. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033–10041.

5

 Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

6

 Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

7

 Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

8

 Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130.

9

 Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

10

Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121–14127.

11

Chou, S. S.; Sai, N.; Lu, P.; Coker, E. N.; Liu, S.; Artyushkova, K.; Luk, T. S.; Kaehr, B.; Brinker, C. J. Understanding catalysis in a multiphasic two- dimensional transition metal dichalcogenide. Nat. Commun. 2015, 6, 8311.

12

Zhang, J.; Wu, J. J.; Guo, H.; Chen, W. B.; Yuan, J. T.; Martinez, U.; Gupta, G.; Mohite, A.; Ajayan, P. M.; Lou, J. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv. Mater. 2017, 29, 1701955.

13

Tan, S. J. R.; Abdelwahab, I.; Ding, Z. J.; Zhao, X. X.; Yang, T. S.; Loke, G. Z. J.; Lin, H.; Verzhbitskiy, I.; Poh, S. M.; Xu, H. et al. Chemical stabilization of 1T' phase transition metal dichalcogenides with giant optical Kerr nonlinearity. J. Am. Chem. Soc. 2017, 139, 2504–2511.

14

Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396.

15

Tan, Y. W.; Liu, P.; Chen, L. Y.; Cong, W. T.; Ito, Y.; Han, J. H.; Guo, X. W.; Tang, Z.; Fujita, T.; Hirata, A. et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 2014, 26, 8023–8028.

16

Shi, J. P.; Yang, Y.; Zhang, Y.; Ma, D. L.; Wei, W.; Ji, Q. Q.; Zhang, Y. S.; Song, X. J.; Gao, T.; Li, C. et al. Monolayer MoS2 growth on Au foils and on-site domain boundary imaging. Adv. Funct. Mater. 2015, 25, 842–849.

17

Shi, J. P.; Ma, D. L.; Han, G. F.; Zhang, Y.; Ji, Q. Q.; Gao, T.; Sun, J. Y.; Song, X. J.; Li, C.; Zhang, Y. S. et al. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 2014, 8, 10196–10204.

18

Chen, Y.; Fan, Z. X.; Luo, Z. M.; Liu, X. Z.; Lai, Z. C.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core–shell nanorods for electrocatalytic ethanol oxidation. Adv. Mater. 2017, 29, 1701331.

19

Hu, J.; Huang, B. L.; Zhang, C. X.; Wang, Z. L.; An, Y. M.; Zhou, D.; Lin, H.; Leung, M. K. H.; Yang, S. H. Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction. Energy Environ. Sci. 2017, 10, 593–603.

20

Abid, I.; Chen, W. B.; Yuan, J. T.; Bohloul, A.; Najmaei, S.; Avendano, C.; Péchou, R.; Mlayah, A.; Lou, J. Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures. ACS Photonics 2017, 4, 1653–1660.

21

Lu, Q. P.; Wang, A. L.; Gong, Y.; Hao, W.; Cheng, H. F.; Chen, J. Z.; Li, B.; Yang, N. L.; Niu, W. X.; Wang, J. et al. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nat. Chem. 2018, 10, 456–461.

22

Hu, T.; Li, R.; Dong, J. M. A new (2×1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations. J. Chem. Phys. 2013, 139, 174702.

23

Jung, W.; Lee, S.; Yoo, D.; Jeong, S.; Miró, P.; Kuc, A.; Heine, T.; Cheon, J. Colloidal synthesis of single-layer MSe2 (M = Mo, W) nanosheets via anisotropic solution-phase growth approach. J. Am. Chem. Soc. 2015, 137, 7266–7269.

24

Naz, M.; Hallam, T.; Berner, N. C.; McEvoy, N.; Gatensby, R.; McManus, J. B.; Akhter, Z.; Duesberg, G. S. A new 2H-2H'/1T cophase in polycrystalline MoS2 and MoSe2 thin films. ACS Appl. Mater. Interfaces 2016, 8, 31442– 31448.

25

Yin, Y.; Zhang, Y. M.; Gao, T. L.; Yao, T.; Zhang, X. H.; Han, J. C.; Wang, X. J.; Zhang, Z. H.; Xu, P.; Zhang, P. et al. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv. Mater. 2017, 29, 1700311.

26

Li, Y.; Cain, J. D.; Hanson, E. D.; Murthy, A. A.; Hao, S. Q.; Shi, F. Y.; Li, Q. Q.; Wolverton, C.; Chen, X. Q.; Dravid, V. P. Au@MoS2 core–shell heterostructures with strong light–matter interactions. Nano Lett. 2016, 16, 7696–7702.

27

Chou, S. S.; Huang, Y. K.; Kim, J.; Kaehr, B.; Foley, B. M.; Lu, P.; Dykstra, C.; Hopkins, P. E.; Brinker, C. J.; Huang, J. X. et al. Controlling the metal to semiconductor transition of MoS2 and WS2 in solution. J. Am. Chem. Soc. 2015, 137, 1742–1745.

28

Chen, S.; Duan, J. J.; Tang, Y. H.; Jin, B.; Qiao, S. Z. Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst. Nano Energy 2015, 11, 11–18.

29

Liu, J. L.; Zheng, Y.; Zhu, D. D.; Vasileff, A.; Ling, T.; Qiao, S. Z. Identification of pH-dependent synergy on Ru/MoS2 interface: A comparison of alkaline and acidic hydrogen evolution. Nanoscale 2017, 9, 16616–16621.

30

Yin, X. M.; Wang, Q. X.; Cao, L.; Tang, C. S.; Luo, X.; Zheng, Y. J.; Wong, L. M.; Wang, S. J.; Quek, S. Y.; Zhang, W. J. et al. Tunable inverted gap in monolayer quasi-metallic MoS2 induced by strong charge-lattice coupling. Nat. Commun. 2017, 8, 486.

31

Shi, Y.; Wang, J.; Wang, C.; Zhai, T. T.; Bao, W. J.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 7365–7370.

32

Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 7568–7579.

33

Liu, Z. Q.; Li, N.; Su, C.; Zhao, H. Y.; Xu, L. L.; Yin, Z. Y.; Li, J.; Du, Y. P. Colloidal synthesis of 1T' phase dominated WS2 towards endurable electrocatalysis. Nano Energy 2018, 50, 176–181.

34

Gao, M. R.; Chan, M. K. Y.; Sun, Y. G. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 2015, 6, 7493.

35

Gu, C.; Hu, S. J.; Zheng, X. S.; Gao, M. R.; Zheng, Y. R.; Shi, L.; Gao, Q.; Zheng, X.; Chu, W. S.; Yao, H. B. et al. Synthesis of sub-2 nm iron-doped NiSe2 nanowires and their surface-confined oxidation for oxygen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 4020–4024.

36

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

37

Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 14433–14437.

Nano Research
Pages 1301-1305
Cite this article:
Liu Z, Zhang X, Gong Y, et al. Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T' phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Research, 2019, 12(6): 1301-1305. https://doi.org/10.1007/s12274-018-2212-8
Topics:
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return