AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries

Yu Zhang1,§Mingzhen Hu2,3,§Mengwei Yuan1Genban Sun1Yufeng Li1Kebin Zhou2Chen Chen3Caiyun Nan1( )Yadong Li3
College of Chemistry,Beijing Normal University,Beijing,100875,China;
School of Chemical Sciences,University of Chinese Academy of Sciences,Beijing,100049,China;
Department of Chemistry,Tsinghua University,Beijing,100084,China;

§Yu Zhang and Mingzhen Hu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Lithium-oxygen batteries have attracted considerable interest in the past a few years, because they have higher theoretical specific energy than Li-ion batteries. However, the available energy densities of the Li-O2 batteries are much less than expected. It is particularly urgent to find catalyst with high activity. Herein, a series of Co3O4 with different morphologies (ordered two-dimensional porous nanosheets, flowerlike and cuboidlike) were successfully prepared through facile hydrothermal and calcination methods. Ordered two-dimensional Co3O4 nanosheets show the best cycling stability. Detailed experimental results reveal that the superiority of the unique two-dimensional uniform porous structures is vital for Li-O2 batteries cathode catalysts. Due to the ordered structures with high surface areas and active sites, the catalysts indicate a high specific discharge capacity of about 10, 417 mAh/g at a current density of 200 mA/g, and steadily cycle for more than 50 times with a limited capacity of 1, 000 mAh/g.

Electronic Supplementary Material

Download File(s)
12274_2018_2214_MOESM1_ESM.pdf (1.6 MB)

References

1

Ma, Z.; Yuan, X. X.; Li, L.; Ma, Z. F.; Wilkinson, D. P.; Zhang, L.; Zhang, J. J. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ. Sci. 2015, 8, 2144–2198.

2

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

3

Li, F. J.; Zhang, T.; Zhou, H. S. Challenges of non-aqueous Li-O2 batteries: Electrolytes, catalysts, and anodes. Energy Environ. Sci. 2013, 6, 1125–1141.

4

Xie, J.; Yao, X. H.; Cheng, Q. M.; Madden, I. P.; Dornath, P.; Chang, C. C.; Fan, W.; Wang, D. W. Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O2 battery cathode. Angew. Chem., Int. Ed. 2015, 54, 4299–4303.

5

Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

6

Luo, X. Y.; Amine, R.; Lau, K. C.; Lu, J.; Zhan, C.; Curtiss, L. A.; Al Hallaj, S.; Chaplin, B. P.; Amine, K. Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study. Nano Res. 2017, 10, 4327–4336.

7

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

8

Guo, X. W.; Liu, P.; Han, J. H.; Ito, Y.; Hirata, A.; Fujita, T.; Chen, M. W. 3D nanoporous nitrogen-doped graphene with encapsulated RuO2 nanoparticles for Li-O2 batteries. Adv. Mater. 2015, 27, 6137–6143.

9

Jian, Z.; Liu, P.; Li, F.; He, P.; Guo, X.; Chen, M.; Zhou, H. Core-shell- structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem., Int. Ed. 2014, 53, 442–446.

10

Tan, P.; Wei, Z. H.; Shyy, W.; Zhao, T. S.; Zhu, X. B. A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium-air batteries in ambient air. Energy Environ. Sci. 2016, 9, 1783–1793.

11

Luo, X. Y.; Lu, J.; Sohm, E.; Ma, L.; Wu, T. P.; Wen, J. G.; Qiu, D. T.; Xu, Y. K.; Ren, Y.; Miller, D. J. et al. Uniformly dispersed FeOx atomic clusters by pulsed arc plasma deposition: An efficient electrocatalyst for improving the performance of Li–O2 battery. Nano Res. 2016, 9, 1913–1920.

12

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

13

Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.

14

Wu, S. C.; Qiao, Y.; Yang, S. X.; Ishida, M.; He, P.; Zhou, H. S. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes. Nat. Commun. 2017, 8, 15607.

15

Prinz, J.; Pignedoli, C. A.; Stöckl, Q. S.; Armbrüster, M.; Brune, H.; Gröning, O.; Widmer, R.; Passerone, D. Adsorption of small hydrocarbons on the three-fold PdGa surfaces: The road to selective hydrogenation. J. Am. Chem. Soc. 2014, 136, 11792–11798.

16

Sun, B.; Chen, S. Q.; Liu, H.; Wang, G. X. Mesoporous carbon nanocube architecture for high-performance lithium-oxygen batteries. Adv. Funct. Mater. 2015, 25, 4436–4444.

17

Guo, Z. Y.; Zhou, D. D.; Dong, X. L.; Qiu, Z. J.; Wang, Y. G.; Xia, Y. Y. Ordered hierarchical mesoporous/macroporous carbon: A high-performance catalyst for rechargeable Li-O2 batteries. Adv. Mater. 2013, 25, 5668–5672.

18

Mohamed, S. G.; Tsai, Y. Q.; Chen, C. J.; Tsai, Y. T.; Hung, T. F.; Chang, W. S.; Liu, R. S. Ternary spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) porous nanorods as bifunctional cathode materials for lithium-O2 batteries. ACS Appl. Mater. Interfaces 2015, 7, 12038–12046.

19

Han, X. P.; Cheng, F. Y.; Chen, C. C.; Hu, Y. X.; Chen, J. Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries. Nano Res. 2015, 8, 156–164.

20

Luo, J. R.; Yao, X. H.; Yang, L.; Han, Y.; Chen, L.; Geng, X. M.; Vattipalli, V.; Dong, Q.; Fan, W.; Wang, D. W. et al. Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications. Nano Res. 2017, 10, 4318–4326.

21

He, T.; Ni, B.; Zhang, S. M.; Gong, Y.; Wang, H. Q.; Gu, L.; Zhuang, J.; Hu, W. P.; Wang, X. Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small 2018, 14, 1703929.

22

Li, K. K.; Jiao, T. F.; Xing, R. R.; Zou, G. D.; Zhou, J. X.; Zhang, L. X.; Peng, Q. M. Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci. China Mater. 2018, 61, 728–736.

23

Wang, X.; Weng, Q. H.; Yang, Y. J.; Bando, Y.; Golberg, D. Hybrid two- dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chem. Soc. Rev. 2016, 45, 4042–4073.

24

Qin, J. Q.; Zhou, F.; Xiao, H.; Ren, R. Y.; Wu, Z. S. Mesoporous polypyrrole- based graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance. Sci. China Mater. 2018, 61, 233–242.

25

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

26

Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

27

Xu, S. M.; Zhu, Q. C.; Du, F. H.; Li, X. H.; Wei, X.; Wang, K. X.; Chen, J. S. Co3O4-based binder-free cathodes for lithium-oxygen batteries with improved cycling stability. Dalton Trans. 2015, 44, 8678–8684.

28

Sun, B.; Liu, H.; Munroe, P.; Ahn, H.; Wang, G. X. Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries. Nano Res. 2012, 5, 460–469.

29

Chen, Y. M.; Yu, L.; Lou, X. W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem., Int. Ed. 2016, 55, 5990–5993.

30

Kong, D. Z.; Luo, J. S.; Wang, Y. L.; Ren, W. N.; Yu, T.; Luo, Y. S.; Yang, Y. P.; Cheng, C. W. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage. Adv. Funct. Mater. 2014, 24, 3815–3826.

31

Yan, Q. Y.; Li, X. Y.; Zhao, Q. D.; Chen, G. H. Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene. J. Hazard. Mater. 2012, 209–210, 385–391.

32

Ryu, W. H.; Yoon, T. H.; Song, S. H.; Jeon, S.; Park, Y. J.; Kim, I. D. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries. Nano Lett. 2013, 13, 4190–4197.

33

Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137.

34

Armelao, L.; Barreca, D.; Gross, S.; Tondello, E. Sol-gel and CVD Co3O4 thin films characterized by XPS. Surf. Sci. Spectra 2001, 8, 14–23.

Nano Research
Pages 299-302
Cite this article:
Zhang Y, Hu M, Yuan M, et al. Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries. Nano Research, 2019, 12(2): 299-302. https://doi.org/10.1007/s12274-018-2214-6
Topics:

760

Views

28

Crossref

N/A

Web of Science

26

Scopus

5

CSCD

Altmetrics

Received: 12 July 2018
Revised: 24 September 2018
Accepted: 27 September 2018
Published: 10 October 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return