AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Effective N-methyl-2-pyrrolidone wet cleaning for fabricating highperformance monolayer MoS2 transistors

Po-Chun Chen1,§Chih-Pin Lin2,§Chuan-Jie Hong3Chih-Hao Yang3Yun-Yan Lin1Ming-Yang Li4Lain-Jong Li5Tung-Yuan Yu6Chun-Jung Su6Kai-Shin Li6Yuan-Liang Zhong3Tuo-Hung Hou2( )Yann-Wen Lan1( )
Department of Physics,"National Taiwan Normal University",Taipei,11677;
Department of Electronics Engineering and Institute of Electronics,"National Chiao Tung University",Hsinchu,30010;
Department of Physics and Center for Nanotechnology,Chung Yuan Christian University,Chungli,32023;
Research Center for Applied Sciences,"Academia Sinica",Taipei,11529;
Physical Sci. and Eng.,King Abdullah University of Sci. and Technology,Thuwal,23955,Kingdom of Saudi Arabia;
"National Nano Device Laboratories","National Applied Research Laboratories",Hsinchu,30078;

§Po-Chun Chen and Chih-Pin Lin contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Two-dimensional semiconductors, such as MoS2 are known to be highly susceptible to diverse molecular adsorbates on the surface during fabrication, which could adversely affect device performance. To ensure high device yield, uniformity and performance, the semiconductor industry has long employed wet chemical cleaning strategies to remove undesirable surface contaminations, adsorbates, and native oxides from the surface of Si wafers. A similarly effective surface cleaning technique for two-dimensional materials has not yet been fully developed. In this study, we propose a wet chemical cleaning strategy for MoS2 by using N-methyl-2-pyrrolidone. The cleaning process not only preserves the intrinsic properties of monolayer MoS2, but also significantly improves the performance of monolayer MoS2 field-effect-transistors. Superior device on current of 12 μA·μm–1 for a channel length of 400 nm, contact resistance of 15 kΩ·μm, field-effect mobility of 15.5 cm2·V–1·s–1, and the average on–off current ratio of 108 were successfully demonstrated

Electronic Supplementary Material

Download File(s)
12274_2018_2215_MOESM1_ESM.pdf (2 MB)

References

1

Uchida, K.; Watanabe, H.; Kinoshita, A.; Koga, J.; Numata, T.; Takagi, S. Experimental study on carrier transport mechanism in ultrathin-body SOI n- and p-MOSFETs with SOI thickness less than 5 nm. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2002, pp 47−50.

2

Uchida, K.; Koga, J.; Takagi, S. Experimental study on carrier transport mechanisms in double- and single-gate ultrathin-body MOSFETs—Coulomb scattering, volume inversion, and δTSOI-, induced scattering. In Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, USA, 2003, pp 33.5.1−33.5.4.

3

Schmidt, M.; Lemme, M. C.; Gottlob, H. D. B.; Driussi, F.; Selmi, L.; Kurz, H. Mobility extraction in SOI MOSFETs with sub 1 nm body thickness. Solid-State Electron. 2009, 53, 1246−1251.

4

Uchida, K.; Takagi, S. Carrier scattering induced by thickness fluctuation of silicon-on-insulator film in ultrathin-body metal–oxide–semiconductor field-effect transistors. Appl. Phys. Lett. 2003, 82, 2916–2918.

5

Low, T.; Li, M. F.; Fan, W. J.; Ng, S. T.; Yeo, Y. C.; Zhu, C.; Chin, A.; Chan, L.; Kwong, D. L. Impact of surface roughness on silicon and germanium ultra-thin-body MOSFETs. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2004, pp 151−154.

6

Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934–9938.

7

Wang, H.; Yu, L. L.; Lee, Y. -H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. -J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

8

Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness- modulated optical energy gap. Nano Lett. 2012, 12, 3695–3700.

9

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

10

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

11

He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936.

12

Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F., Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626−3630.

13

Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361−5366.

14

Das, S.; Chen, H. -Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

15

Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.

16

Liu, H.; Si, M. W.; Najmaei, S.; Neal, A. T.; Du, Y. C.; Ajayan, P. M.; Lou, J.; Ye, P. D. Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett. 2013, 13, 2640–2646.

17

Li, S. -L.; Wakabayashi, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W. -W.; Lin, Y. -F.; Aparecido-Ferreira, A.; Tsukagoshi, K. Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett. 2013, 13, 3546–3552.

18

Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275–6280.

19

Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

20

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

21

Jena, D.; Banerjee, K.; Xing, G. H. 2D crystal semiconductors: Intimate contacts. Nat. Mater. 2014, 13, 1076–1078.

22

Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two- dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

23

Du, Y. C.; Yang, L. M.; Zhang, J. Y.; Liu, H.; Majumdar, K.; Kirsch, P. D.; Ye, P. D. MoS2 field-effect transistors with graphene/metal heterocontacts. IEEE Electron Device Lett. 2014, 35, 599–601.

24

Liu, Y.; Guo, J.; Wu, Y. C.; Zhu, E. B.; Weiss, N. O.; He, Q. Y.; Wu, H.; Cheng, H. -C.; Xu, Y.; Shakir, I. et al. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett. 2016, 16, 6337–6342.

25

English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 2016, 16, 3824−3830.

26

Ma, N.; Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 2014, 4, 011043.

27

Li, H.; Wu, J.; Huang, X.; Yin, Z. Y.; Liu, J. Q.; Zhang, H. A universal, rapid method for clean transfer of nanostructures onto various substrates. ACS Nano 2014, 8, 6563–6570.

28

Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635−5641.

29

Park, W.; Park, J.; Jang, J.; Lee, H.; Jeong, H.; Cho, K.; Hong, S.; Lee, T. Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology 2013, 24, 095202.

30

Qiu, H.; Pan, L. J.; Yao, Z. N.; Li, J. J.; Shi, Y.; Wang, X. R. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 123104.

31

Li, L.; Engel, M.; Farmer, D. B.; Han, S. J.; Wong, H. S. P. High-performance p-type black phosphorus transistor with scandium contact. ACS Nano 2016, 10, 4672–4677.

32

Yang, L. M.; Qiu, G.; Si, M. W.; Charnas, A. R.; Milligan, C. A.; Zemlyanov, D. Y.; Zhou, H.; Du, Y. C.; Lin, Y. M.; Tsai, W. et al. Few-layer black phosporous PMOSFETs with BN/Al2O3 bilayer gate dielectric: Achieving Ion = 850 μA/μm, gm = 340 μS/μm, and Rc = 0.58 kΩ·μm. In Proceedings of the 2016 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2016, pp 5.5.1−5.5.4.

33

Chang, C. Y.; Sze, S. M. ULSI Technology; McGraw-Hill College: New York, 1996.

34

Jawaid, A.; Nepal, D.; Park, K.; Jespersen, M.; Qualley, A.; Mirau, P.; Drummy, L. F.; Vaia, R. A. Mechanism for liquid phase exfoliation of MoS2. Chem. Mater. 2016, 28, 337−348.

35

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563−568.

36

Gupta, A.; Arunachalam, V.; Vasudevan, S. Liquid-phase exfoliation of MoS2 nanosheets: The critical role of trace water. J. Phys. Chem. Lett. 2016, 7, 4884–4890.

37

Thodkar, K.; Thompson, D.; Lüönd, F.; Moser, L.; Overney, F.; Marot, L.; Schönenberger, C.; Jeanneret, B.; Calame, M. Restoring the electrical properties of CVD graphene via physisorption of molecular adsorbates. ACS Appl. Mater. Interfaces 2017, 9, 25014–25022.

38

Schroder, D. K. Semiconductor Material and Device Characterization, 3rd ed.; John Wiley & Sons: Hoboken, 2006.

39

Yoon, M. H.; Kim, C.; Facchetti, A.; Marks, T. J. Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J. Am. Chem. Soc. 2006, 128, 12851–12869.

40

Park, J. -S.; Jeong, J. K.; Chung, H. -J.; Mo, Y. -G.; Kim, H. D. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl. Phys. Lett. 2008, 92, 072104.

41

Hu, C. M. Modern Semiconductor Devices for Integrated Circuits; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010.

42

Smithe, K. K. H.; English, C. D.; Suryavanshi, S. V; Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 2017, 4, 011009.

43

Cui, X.; Lee, G. -H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. -H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Nanotechnol. 2015, 10, 534–540.

44

Cui, X.; Shih, E. M.; Jauregui, L. A.; Chae, S. H.; Kim, Y. D.; Li, B. C.; Sea, D.; Pistunova, K.; Yin, J.; Park, J. H. et al. Low-temperature Ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 2017, 17, 4781–4786.

45

Liu, W.; Sarkar, D.; Kang, J. H.; Cao, W.; Banerjee, K. Impact of contact on the operation and performance of back-gated monolayer MoS2 field- effect-transistors. ACS Nano 2015, 9, 7904−7912.

46

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

Nano Research
Pages 303-308
Cite this article:
Chen P-C, Lin C-P, Hong C-J, et al. Effective N-methyl-2-pyrrolidone wet cleaning for fabricating highperformance monolayer MoS2 transistors. Nano Research, 2019, 12(2): 303-308. https://doi.org/10.1007/s12274-018-2215-5
Topics:

782

Views

14

Crossref

N/A

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 27 June 2018
Revised: 28 September 2018
Accepted: 05 October 2018
Published: 05 October 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return