Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Fluorescent silicon nanoparticles (SiNPs) bring exciting opportunities for long-awaited silicon-based optical application, while intrinsic indirect band gap of silicon severely limits photoluminescent quantum yield (PLQY) of SiNPs. To address this critical issue, we herein demonstrate a facile and general method, i.e., solvent polarity-induced photoluminescence enhancement (SPIPE), yielding several-fold increase in quantum yield (QY) of SiNPs. Typically, different kinds of 4-substituented-1,8-naphthalic anhydride molecules, i.e., 4-Br-1,8-naphthalic anhydride (BNA), 4-triphenylamino-1,8-naphthalic anhydride (TPNA), and 4-dimethylamino-1,8-naphthalic anhydride (DMNA), are rationally designed and synthesized, which serve as surface ligands for the production of BNA-, TPNA-, and DMNA-capped small-sized (diameter: ~ 3.8–5.8 nm) SiNPs with QY of ~ 8%, ~ 15%, ~ 16%, respectively. Of particular significance, QY of the resultant SiNPs could be greatly enhanced from ~ 10% to ~ 50% through the SPIPE strategy. Taken together with the theoretical calculation and the results of time-correlated single photon counting, we reveal that actived excited-state charge transfer interactions between surface-covered ligand and silicon oxide coating would be responsible for the observed QY enhancement. Moreover, other five kinds of solvents (i.e., methanol, isopropanol, dimethyl sulfoxide, N, N-dimethylformamide, and acetonitrile) are further employed for the SiNPs treatment, and similar improvement of QY values are observed, convincingly demonstrating the universal evidence of SPIPE of the SiNPs.
Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A. Tin-seeded silicon nanowires for high capacity Li-ion batteries. Chem. Mater. 2012, 24, 3738-3745.
Philippe, B.; Dedryvère, R.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K. Role of the LiPF6 salt for the long-term stability of silicon electrodes in Li-Ion batteries - a photoelectron spectroscopy study. Chem. Mater. 2013, 25, 394-404.
Chiappini, C.; De Rosa, E.; Martinez, J. O.; Liu, X.; Steele, J.; Stevens, M. M.; Tasciotti, E. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 2015, 14, 532–539.
Pavesi, L.; Dal Negro, L.; Mazzoleni, C.; Franzò, G.; Priolo, F. Optical gain in silicon nanocrystals. Nature 2000, 408, 440–444.
Ciampi, S.; Harper, J. B.; Gooding, J. J. Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si–C bonds: Surface preparation, passivation and functionalization. Chem. Soc. Rev. 2010, 39, 2158–2183.
Song, B.; Zhong. Y. L.; Wu, S. C.; Chu, B. B.; Su, Y. Y.; He, Y. One-dimensional fluorescent silicon nanorods featuring ultrahigh photostability, favorable biocompatibility, and excitation wavelength-dependent emission spectra. J. Am. Chem. Soc., 2016, 138, 4824–4831.
Jiang, A. R.; Song, B.; Ji, X. Y.; Peng, F.; Wang, H. Y.; Su, Y. Y.; He, Y. Doxorubicin-loaded silicon nanoparticles impregnated into red blood cells featuring bright fluorescence, strong photostability, and lengthened blood residency. Nano Res. 2018, 11, 2285–2294.
Zhou, Y. F.; Zhang, Y.; Zhong, Y. L.; Fu, R.; Wu, S. C.; Wang, Q.; Wang, H. Y.; Su, Y. Y.; Zhang, H. M.; He, Y. The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in Caenorhabditis elegans. Nano Res. 2018, 11, 2336–2346.
Cheng, X. Y.; Lowe, S. B.; Reece, P. J.; Gooding, J. J. Colloidal silicon quantum dots: From preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 2014, 43, 2680–2700.
McVey, B. F. P.; Tilley, R. D. Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. Acc. Chem. Res. 2014, 47, 3045–3051.
Dasog, M.; Kehrle, J.; Rieger, B.; Veinot, J. G. C. Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications. Angew. Chem., Int. Ed. 2016, 55, 2322–2339.
Kafshgari, M. H.; Delalat, B.; Tong, W. Y.; Harding, F. J. Kaasalainen, M.; Salonen, J.; Voelcker, N. H. Oligonucleotide delivery by chitosan-functionalized porous silicon nanoparticles. Nano Res. 2015, 8, 2033–2046.
Ni, Z. Y.; Pi, X. D.; Cottenier, S.; Yang, D. R. Density functional theory study on the B doping and B/P Codoping of Si nanocrystals embedded in SiO2. Phys. Rev. B 2017, 95, 075307.
Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048.
Cullis, A. G.; Canham, L. T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 1991, 353, 335–338.
Godefroo, S.; Hayne, M.; Jivanescu, M.; Stesmans, A.; Zacharias, M.; Lebedev, O. I.; Van Tendeloo, G.; Moshchalkov, V. V. Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 2008, 3, 174–178.
Anthony, R. J.; Rowe, D. J.; Stein, M.; Yang, J. H.; Kortshagen, U. Routes to achieving high quantum yield luminescence from gas-phase-produced silicon nanocrystals. Adv. Funct. Mater. 2011, 21, 4042–4046.
Li, Q.; He, Y.; Chang, J.; Wang, L.; Chen, H. Z.; Tan, Y. W.; Wang, H. Y.; Shao, Z. Z. Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J. Am. Chem. Soc. 2013, 135, 14924– 14927.
Lauerhaas, J. M.; Sailor, M. J. Chemical modification of the photoluminescence quenching of porous silicon. Science 1993, 261, 1567–1568.
Lauerhaas, J. M., Credo, G. M.; Heinrich, J. L.; Sailor, M. J. Reversible luminescence quenching of porous silicon by solvents. J. Am. Chem. Soc. 1992, 114, 1911–1912.
Zhong, Y. L.; Peng, F.; Bao, F.; Wang, S. Y.; Ji, X. Y.; Yang, L.; Su, Y. Y.; Lee, S. T.; He, Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J. Am. Chem. Soc. 2013, 135, 8350–8356.
Li, Q.; Luo, T. Y.; Zhou, M.; Abroshan, H.; Huang, J. C.; Kim, H. J.; Rosi, N. L.; Shao, Z. Z.; Jin, R. C. Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law. ACS Nano 2016, 10, 8385–8393.
Lillo, C. R.; Romero, J. J.; Portolés, M. L.; Diez, R. P.; Caregnato, P.; Gonzalez, M. C. Organic coating of 1–2-nm-size silicon nanoparticles: Effect on particle properties. Nano Res. 2015, 8, 2047–2062.
He, Y.; Zhong, Y. L.; Peng, F.; Wei, X. P.; Su, Y. Y.; Lu, Y. M.; Su, S.; Gu, W.; Liao, L. S.; Lee, S. T. One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J. Am. Chem. Soc. 2011, 133, 14192–14195.
Ji, X. Y.; Peng, F.; Zhong, Y. L.; Su, Y. Y.; Jiang, X. X.; Song, C. X.; Yang, L.; Chu, B. B.; Lee, S. T.; He, Y. Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy. Adv. Mater. 2015, 27, 1029–1034.
Wu, S. C.; Zhong, Y. L.; Zhou, Y. F.; Song, B.; Chu, B. B.; Ji, X. Y.; Wu, Y. Y.; Su, Y. Y.; He, Y. Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J. Am. Chem. Soc. 2015, 137, 14726– 14732.
Prendergast, D.; Grossman, J. C.; Williamson, A. J.; Fattebert, J. L.; Galli, G. Optical properties of silicon clusters in the presence of water: A first principles theoretical analysis. J. Am. Chem. Soc. 2004, 126, 13827–13837.
Gerbec, J. A.; Magana, D.; Washington, A.; Strouse, G. F. Microwave-enhanced reaction rates for nanoparticle synthesis. J. Am. Chem. Soc. 2005, 127, 15791–15800.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539.
Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Malinge, J.; Allain, C.; Brosseau, A.; Audebert, P. White fluorescence from core–shell silica nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 8534–8537.
Cai, Y. S.; Guo, Z. Q.; Chen, J. M.; Li, W. L.; Zhong, L. B.; Gao, Y.; Jiang, L.; Chi, L. F.; Tian, H.; Zhu, W. H. Enabling light work in helical self-assembly for dynamic amplification of chirality with photoreversibility. J. Am. Chem. Soc. 2016, 138, 2219–2224.
Fellah, S.; Ozanam, F.; Gabouze, N.; Chazalviel, J. N. Porous silicon in solvents: Constant-lifetime PL quenching and confirmation of dielectric effects. Phys. Stat. Sol. (a) 2000, 182, 367–372.
Tang, Y. H.; Kong, X. Q.; Xu, A.; Dong, B. L.; Lin, W. Y. Development of a two-photon fluorescent probe for imaging of endogenous formaldehyde in living tissues. Angew. Chem., Int. Ed. 2016, 55, 3356–3359.
Purkait, T. K.; Iqbal, M.; Wahl, M. H.; Gottschling, K.; Gonzalez, C. M.; Islam, M. A.; Veinot, J. G. C. Borane-catalyzed room-temperature hydrosilylation of alkenes/alkynes on silicon nanocrystal surfaces. J. Am. Chem. Soc. 2014, 136, 17914-17917.
Housecroft, C. E.; Sharpe, A. G. Inorganic Chemistry; 2nd ed. Pearson: Essex, England, 2005.
Dasog, M.; Yang, Z. Y.; Regli, S.; Atkins, T. M.; Faramus, A.; Singh, M. P.; Muthuswamy, E.; Kauzlarich, S. M.; Tilley, R. D.; Veinot, J. G. C. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano 2013, 7, 2676–2685.
Margalias, A.; Seintis, K.; Yigit, M. Z.; Can, M.; Sygkridou, D.; Giannetas, V.; Fakis, M.; Stathatos, E. The effect of additional electron donating group on the photophysics and photovoltaic performance of two new metal free D-π-A sensitizers. Dyes Pigments 2015, 121, 316–327.
Mastronardi, M. L.; Maier-Flaig, F.; Faulkner, D.; Henderson, E. J.; Kübel, C.; Lemmer, U.; Ozin, G. A. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Lett. 2012, 12, 337–342.
Miller, J. B.; Van Sickle, A. R.; Anthony, R. J.; Kroll, D. M.; Kortshagen, U. R.; Hobbie, E. K. Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals. ACS Nano 2012, 6, 7389-7396.
Hessel, C. M.; Reid, D.; Panthani, M. G.; Rasch, M. R.; Goodfellow, B. W.; Wei, J. W.; Fujii, H.; Akhavan, V.; Korgel, B. A. Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 2012, 24, 393-401.
Kim, D.; Zuidema, J. M.; Kang, J. Y.; Pan, Y. L.; Wu, L. B.; Warther, D.; Arkles, B.; Sailor, M. J. Facile surface modification of hydroxylated silicon nanostructures using heterocyclic silanes. J. Am. Chem. Soc. 2016, 138, 15106–15109.
Islam, A.; Cheng, C. C.; Chi, S. H.; Lee, S. J.; Hela, P. G.; Chen, I. C.; Cheng, C. H. Aminonaphthalic anhydrides as red-emitting materials: Electroluminescence, crystal structure, and photophysical properties. J. Phys. Chem. B 2005, 109, 5509–5517.
Stolle, C. J.; Lu, X. T.; Yu, Y. X.; Schaller, R. D.; Korgel, B. A. Efficient carrier multiplication in colloidal silicon nanorods. Nano Lett. 2017, 17, 5580-5586.
Ferreira, R.; Remón, P.; Pischel, U. Multivalued logic with a tristable fluorescent switch. J. Phys. Chem. C 2009, 113, 5805–5811.
Sangghaleh, F.; Sychugov, I.; Yang, Z. Y.; Veinot, J. G. C.; Linnros, J. Near-unity internal quantum efficiency of luminescent silicon nanocrystals with ligand passivation. ACS Nano 2015, 9, 7097–7104.
Fuzell, J.; Thibert, A.; Atkins, T. M.; Dasog, M.; Busby, E.; Veinot, J. G. C.; Kauzlarich, S. M.; Larsen, D. S. Red states versus blue states in colloidal silicon nanocrystals: exciton sequestration into low-density traps. J. Phys. Chem. Lett. 2013, 4, 3806–3812.
Ajayi, O. A.; Anderson, N. C.; Cotlet, M.; Petrone, N.; Gu, T.; Wolcott, A.; Gesuele, F.; Hone, J.; Owen, J. S.; Wong, C. W. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene. Appl. Phys. Lett. 2014, 104, 171101.
Dasog, M.; De los Reyes, G. B.; Titova, L. V.; Hegmann, F. A.; Veinot, J. G. C. Size vs. surface: Tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano 2014, 8, 9636–9648.
De los Reyes, G. B.; Dasog, M.; Na, M. X.; Titova, L. V.; Veinot, J. G. C.; Hegmann, F. A. Charge transfer state emission dynamics in blue-emitting functionalized silicon nanocrystals. Phys. Chem. Chem. Phys. 2015, 17, 30125–30133.
Wang, L.; Li, Q.; Wang, H. Y.; Huang, J. C.; Zhang, R.; Chen, Q. D.; Xu, H. L.; Han, W.; Shao, Z. Z.; Sun, H. B. Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence. Light: Sci. Appl. 2015, 4, e245.
Resch, U.; Eychmueller, A.; Haase, M.; Weller, H. Absorption and fluorescence behavior of redispersible cadmium sulfide colloids in various organic solvents. Langmuir 1992, 8, 2215–2218.
Silvera-Batista, C. A.; Wang, R. K.; Weinberg, P.; Ziegler, K. J. Solvatochromic shifts of single-walled carbon nanotubes in nonpolar microenvironments. Phys. Chem. Chem. Phys. 2010, 12, 6990–6998.
Larsen, B. A.; Deria, P.; Holt, J. M.; Stanton, I. N.; Heben, M. J.; Therien, M. J.; Blackburn, J. L. Effect of solvent polarity and electrophilicity on quantum yields and solvatochromic shifts of single-walled carbon nanotube photoluminescence. J. Am. Chem. Soc. 2012, 134, 12485–12491.
Sunahara, H.; Urano, Y.; Kojima, H.; Nagano, T. Design and synthesis of a library of BODIPY-based environmental polarity sensors utilizing photoinduced electron-transfer-controlled fluorescence on/off switching. J. Am. Chem. Soc. 2007, 129, 5597–5604.
Signore, G.; Nifosi, R.; Albertazzi, L.; Storti, B.; Bizzarri, R. Polarity-sensitive coumarins tailored to live cell imaging. J. Am. Chem. Soc. 2010, 132, 1276–1288.
Wiedbrauk, S.; Maerz, B.; Samoylova, E.; Reiner, A.; Trommer, F.; Mayer, P.; Zinth, W.; Dube, H. Twisted hemithioindigo photoswitches: Solvent polarity determines the type of light-induced rotations. J. Am. Chem. Soc. 2016, 138, 12219–12227.