AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Solvent polarity-induced photoluminescence enhancement (SPIPE): A method enables several-fold increase in quantum yield of silicon nanoparticles

Xiao-Bin Shen1,2,§Bin Song1,§Bei Fang1Xiao Yuan1You-Yong Li1Shun-Yi Wang2Shun-Jun Ji2( )Yao He1( )
Laboratory of Nanoscale Biochemical Analysis,Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University,Suzhou,215123,China;
Key Laboratory of Organic Synthesis of Jiangsu Province,College of Chemistry, Chemical Engineering and Materials Science, Soochow University,Suzhou,215123,China;

§ Xiao-Bin Shen and Bin Song contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Fluorescent silicon nanoparticles (SiNPs) bring exciting opportunities for long-awaited silicon-based optical application, while intrinsic indirect band gap of silicon severely limits photoluminescent quantum yield (PLQY) of SiNPs. To address this critical issue, we herein demonstrate a facile and general method, i.e., solvent polarity-induced photoluminescence enhancement (SPIPE), yielding several-fold increase in quantum yield (QY) of SiNPs. Typically, different kinds of 4-substituented-1,8-naphthalic anhydride molecules, i.e., 4-Br-1,8-naphthalic anhydride (BNA), 4-triphenylamino-1,8-naphthalic anhydride (TPNA), and 4-dimethylamino-1,8-naphthalic anhydride (DMNA), are rationally designed and synthesized, which serve as surface ligands for the production of BNA-, TPNA-, and DMNA-capped small-sized (diameter: ~ 3.8–5.8 nm) SiNPs with QY of ~ 8%, ~ 15%, ~ 16%, respectively. Of particular significance, QY of the resultant SiNPs could be greatly enhanced from ~ 10% to ~ 50% through the SPIPE strategy. Taken together with the theoretical calculation and the results of time-correlated single photon counting, we reveal that actived excited-state charge transfer interactions between surface-covered ligand and silicon oxide coating would be responsible for the observed QY enhancement. Moreover, other five kinds of solvents (i.e., methanol, isopropanol, dimethyl sulfoxide, N, N-dimethylformamide, and acetonitrile) are further employed for the SiNPs treatment, and similar improvement of QY values are observed, convincingly demonstrating the universal evidence of SPIPE of the SiNPs.

Electronic Supplementary Material

Download File(s)
12274_2018_2217_MOESM1_ESM.pdf (4.2 MB)

References

1

Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A. Tin-seeded silicon nanowires for high capacity Li-ion batteries. Chem. Mater. 2012, 24, 3738-3745.

2

Philippe, B.; Dedryvère, R.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K. Role of the LiPF6 salt for the long-term stability of silicon electrodes in Li-Ion batteries - a photoelectron spectroscopy study. Chem. Mater. 2013, 25, 394-404.

3

Chiappini, C.; De Rosa, E.; Martinez, J. O.; Liu, X.; Steele, J.; Stevens, M. M.; Tasciotti, E. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 2015, 14, 532–539.

4

Pavesi, L.; Dal Negro, L.; Mazzoleni, C.; Franzò, G.; Priolo, F. Optical gain in silicon nanocrystals. Nature 2000, 408, 440–444.

5

Ciampi, S.; Harper, J. B.; Gooding, J. J. Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si–C bonds: Surface preparation, passivation and functionalization. Chem. Soc. Rev. 2010, 39, 2158–2183.

6

Song, B.; Zhong. Y. L.; Wu, S. C.; Chu, B. B.; Su, Y. Y.; He, Y. One-dimensional fluorescent silicon nanorods featuring ultrahigh photostability, favorable biocompatibility, and excitation wavelength-dependent emission spectra. J. Am. Chem. Soc., 2016, 138, 4824–4831.

7

Jiang, A. R.; Song, B.; Ji, X. Y.; Peng, F.; Wang, H. Y.; Su, Y. Y.; He, Y. Doxorubicin-loaded silicon nanoparticles impregnated into red blood cells featuring bright fluorescence, strong photostability, and lengthened blood residency. Nano Res. 2018, 11, 2285–2294.

8

Zhou, Y. F.; Zhang, Y.; Zhong, Y. L.; Fu, R.; Wu, S. C.; Wang, Q.; Wang, H. Y.; Su, Y. Y.; Zhang, H. M.; He, Y. The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in Caenorhabditis elegans. Nano Res. 2018, 11, 2336–2346.

9

Cheng, X. Y.; Lowe, S. B.; Reece, P. J.; Gooding, J. J. Colloidal silicon quantum dots: From preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 2014, 43, 2680–2700.

10

McVey, B. F. P.; Tilley, R. D. Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. Acc. Chem. Res. 2014, 47, 3045–3051.

11

Dasog, M.; Kehrle, J.; Rieger, B.; Veinot, J. G. C. Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications. Angew. Chem., Int. Ed. 2016, 55, 2322–2339.

12

Kafshgari, M. H.; Delalat, B.; Tong, W. Y.; Harding, F. J. Kaasalainen, M.; Salonen, J.; Voelcker, N. H. Oligonucleotide delivery by chitosan-functionalized porous silicon nanoparticles. Nano Res. 2015, 8, 2033–2046.

13

Ni, Z. Y.; Pi, X. D.; Cottenier, S.; Yang, D. R. Density functional theory study on the B doping and B/P Codoping of Si nanocrystals embedded in SiO2. Phys. Rev. B 2017, 95, 075307.

14

Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048.

15

Cullis, A. G.; Canham, L. T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 1991, 353, 335–338.

16

Godefroo, S.; Hayne, M.; Jivanescu, M.; Stesmans, A.; Zacharias, M.; Lebedev, O. I.; Van Tendeloo, G.; Moshchalkov, V. V. Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 2008, 3, 174–178.

17

Anthony, R. J.; Rowe, D. J.; Stein, M.; Yang, J. H.; Kortshagen, U. Routes to achieving high quantum yield luminescence from gas-phase-produced silicon nanocrystals. Adv. Funct. Mater. 2011, 21, 4042–4046.

18

Li, Q.; He, Y.; Chang, J.; Wang, L.; Chen, H. Z.; Tan, Y. W.; Wang, H. Y.; Shao, Z. Z. Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J. Am. Chem. Soc. 2013, 135, 14924– 14927.

19

Lauerhaas, J. M.; Sailor, M. J. Chemical modification of the photoluminescence quenching of porous silicon. Science 1993, 261, 1567–1568.

20

Lauerhaas, J. M., Credo, G. M.; Heinrich, J. L.; Sailor, M. J. Reversible luminescence quenching of porous silicon by solvents. J. Am. Chem. Soc. 1992, 114, 1911–1912.

21

Zhong, Y. L.; Peng, F.; Bao, F.; Wang, S. Y.; Ji, X. Y.; Yang, L.; Su, Y. Y.; Lee, S. T.; He, Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J. Am. Chem. Soc. 2013, 135, 8350–8356.

22

Li, Q.; Luo, T. Y.; Zhou, M.; Abroshan, H.; Huang, J. C.; Kim, H. J.; Rosi, N. L.; Shao, Z. Z.; Jin, R. C. Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law. ACS Nano 2016, 10, 8385–8393.

23

Lillo, C. R.; Romero, J. J.; Portolés, M. L.; Diez, R. P.; Caregnato, P.; Gonzalez, M. C. Organic coating of 1–2-nm-size silicon nanoparticles: Effect on particle properties. Nano Res. 2015, 8, 2047–2062.

24

He, Y.; Zhong, Y. L.; Peng, F.; Wei, X. P.; Su, Y. Y.; Lu, Y. M.; Su, S.; Gu, W.; Liao, L. S.; Lee, S. T. One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J. Am. Chem. Soc. 2011, 133, 14192–14195.

25

Ji, X. Y.; Peng, F.; Zhong, Y. L.; Su, Y. Y.; Jiang, X. X.; Song, C. X.; Yang, L.; Chu, B. B.; Lee, S. T.; He, Y. Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy. Adv. Mater. 2015, 27, 1029–1034.

26

Wu, S. C.; Zhong, Y. L.; Zhou, Y. F.; Song, B.; Chu, B. B.; Ji, X. Y.; Wu, Y. Y.; Su, Y. Y.; He, Y. Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J. Am. Chem. Soc. 2015, 137, 14726– 14732.

27

Prendergast, D.; Grossman, J. C.; Williamson, A. J.; Fattebert, J. L.; Galli, G. Optical properties of silicon clusters in the presence of water: A first principles theoretical analysis. J. Am. Chem. Soc. 2004, 126, 13827–13837.

28

Gerbec, J. A.; Magana, D.; Washington, A.; Strouse, G. F. Microwave-enhanced reaction rates for nanoparticle synthesis. J. Am. Chem. Soc. 2005, 127, 15791–15800.

29

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

30

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

31

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

32

Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539.

33

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

34

Malinge, J.; Allain, C.; Brosseau, A.; Audebert, P. White fluorescence from core–shell silica nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 8534–8537.

35

Cai, Y. S.; Guo, Z. Q.; Chen, J. M.; Li, W. L.; Zhong, L. B.; Gao, Y.; Jiang, L.; Chi, L. F.; Tian, H.; Zhu, W. H. Enabling light work in helical self-assembly for dynamic amplification of chirality with photoreversibility. J. Am. Chem. Soc. 2016, 138, 2219–2224.

36

Fellah, S.; Ozanam, F.; Gabouze, N.; Chazalviel, J. N. Porous silicon in solvents: Constant-lifetime PL quenching and confirmation of dielectric effects. Phys. Stat. Sol. (a) 2000, 182, 367–372.

37

Tang, Y. H.; Kong, X. Q.; Xu, A.; Dong, B. L.; Lin, W. Y. Development of a two-photon fluorescent probe for imaging of endogenous formaldehyde in living tissues. Angew. Chem., Int. Ed. 2016, 55, 3356–3359.

38

Purkait, T. K.; Iqbal, M.; Wahl, M. H.; Gottschling, K.; Gonzalez, C. M.; Islam, M. A.; Veinot, J. G. C. Borane-catalyzed room-temperature hydrosilylation of alkenes/alkynes on silicon nanocrystal surfaces. J. Am. Chem. Soc. 2014, 136, 17914-17917.

39

Housecroft, C. E.; Sharpe, A. G. Inorganic Chemistry; 2nd ed. Pearson: Essex, England, 2005.

40

Dasog, M.; Yang, Z. Y.; Regli, S.; Atkins, T. M.; Faramus, A.; Singh, M. P.; Muthuswamy, E.; Kauzlarich, S. M.; Tilley, R. D.; Veinot, J. G. C. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano 2013, 7, 2676–2685.

41

Margalias, A.; Seintis, K.; Yigit, M. Z.; Can, M.; Sygkridou, D.; Giannetas, V.; Fakis, M.; Stathatos, E. The effect of additional electron donating group on the photophysics and photovoltaic performance of two new metal free D-π-A sensitizers. Dyes Pigments 2015, 121, 316–327.

42

Mastronardi, M. L.; Maier-Flaig, F.; Faulkner, D.; Henderson, E. J.; Kübel, C.; Lemmer, U.; Ozin, G. A. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Lett. 2012, 12, 337–342.

43

Miller, J. B.; Van Sickle, A. R.; Anthony, R. J.; Kroll, D. M.; Kortshagen, U. R.; Hobbie, E. K. Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals. ACS Nano 2012, 6, 7389-7396.

44

Hessel, C. M.; Reid, D.; Panthani, M. G.; Rasch, M. R.; Goodfellow, B. W.; Wei, J. W.; Fujii, H.; Akhavan, V.; Korgel, B. A. Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 2012, 24, 393-401.

45

Kim, D.; Zuidema, J. M.; Kang, J. Y.; Pan, Y. L.; Wu, L. B.; Warther, D.; Arkles, B.; Sailor, M. J. Facile surface modification of hydroxylated silicon nanostructures using heterocyclic silanes. J. Am. Chem. Soc. 2016, 138, 15106–15109.

46

Islam, A.; Cheng, C. C.; Chi, S. H.; Lee, S. J.; Hela, P. G.; Chen, I. C.; Cheng, C. H. Aminonaphthalic anhydrides as red-emitting materials: Electroluminescence, crystal structure, and photophysical properties. J. Phys. Chem. B 2005, 109, 5509–5517.

47

Stolle, C. J.; Lu, X. T.; Yu, Y. X.; Schaller, R. D.; Korgel, B. A. Efficient carrier multiplication in colloidal silicon nanorods. Nano Lett. 2017, 17, 5580-5586.

48

Ferreira, R.; Remón, P.; Pischel, U. Multivalued logic with a tristable fluorescent switch. J. Phys. Chem. C 2009, 113, 5805–5811.

49

Sangghaleh, F.; Sychugov, I.; Yang, Z. Y.; Veinot, J. G. C.; Linnros, J. Near-unity internal quantum efficiency of luminescent silicon nanocrystals with ligand passivation. ACS Nano 2015, 9, 7097–7104.

50

Fuzell, J.; Thibert, A.; Atkins, T. M.; Dasog, M.; Busby, E.; Veinot, J. G. C.; Kauzlarich, S. M.; Larsen, D. S. Red states versus blue states in colloidal silicon nanocrystals: exciton sequestration into low-density traps. J. Phys. Chem. Lett. 2013, 4, 3806–3812.

51

Ajayi, O. A.; Anderson, N. C.; Cotlet, M.; Petrone, N.; Gu, T.; Wolcott, A.; Gesuele, F.; Hone, J.; Owen, J. S.; Wong, C. W. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene. Appl. Phys. Lett. 2014, 104, 171101.

52

Dasog, M.; De los Reyes, G. B.; Titova, L. V.; Hegmann, F. A.; Veinot, J. G. C. Size vs. surface: Tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano 2014, 8, 9636–9648.

53

De los Reyes, G. B.; Dasog, M.; Na, M. X.; Titova, L. V.; Veinot, J. G. C.; Hegmann, F. A. Charge transfer state emission dynamics in blue-emitting functionalized silicon nanocrystals. Phys. Chem. Chem. Phys. 2015, 17, 30125–30133.

54

Wang, L.; Li, Q.; Wang, H. Y.; Huang, J. C.; Zhang, R.; Chen, Q. D.; Xu, H. L.; Han, W.; Shao, Z. Z.; Sun, H. B. Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence. Light: Sci. Appl. 2015, 4, e245.

55

Resch, U.; Eychmueller, A.; Haase, M.; Weller, H. Absorption and fluorescence behavior of redispersible cadmium sulfide colloids in various organic solvents. Langmuir 1992, 8, 2215–2218.

56

Silvera-Batista, C. A.; Wang, R. K.; Weinberg, P.; Ziegler, K. J. Solvatochromic shifts of single-walled carbon nanotubes in nonpolar microenvironments. Phys. Chem. Chem. Phys. 2010, 12, 6990–6998.

57

Larsen, B. A.; Deria, P.; Holt, J. M.; Stanton, I. N.; Heben, M. J.; Therien, M. J.; Blackburn, J. L. Effect of solvent polarity and electrophilicity on quantum yields and solvatochromic shifts of single-walled carbon nanotube photoluminescence. J. Am. Chem. Soc. 2012, 134, 12485–12491.

58

Sunahara, H.; Urano, Y.; Kojima, H.; Nagano, T. Design and synthesis of a library of BODIPY-based environmental polarity sensors utilizing photoinduced electron-transfer-controlled fluorescence on/off switching. J. Am. Chem. Soc. 2007, 129, 5597–5604.

59

Signore, G.; Nifosi, R.; Albertazzi, L.; Storti, B.; Bizzarri, R. Polarity-sensitive coumarins tailored to live cell imaging. J. Am. Chem. Soc. 2010, 132, 1276–1288.

60

Wiedbrauk, S.; Maerz, B.; Samoylova, E.; Reiner, A.; Trommer, F.; Mayer, P.; Zinth, W.; Dube, H. Twisted hemithioindigo photoswitches: Solvent polarity determines the type of light-induced rotations. J. Am. Chem. Soc. 2016, 138, 12219–12227.

Nano Research
Pages 315-322
Cite this article:
Shen X-B, Song B, Fang B, et al. Solvent polarity-induced photoluminescence enhancement (SPIPE): A method enables several-fold increase in quantum yield of silicon nanoparticles. Nano Research, 2019, 12(2): 315-322. https://doi.org/10.1007/s12274-018-2217-3
Topics:

752

Views

11

Crossref

N/A

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 09 July 2018
Revised: 27 September 2018
Accepted: 30 September 2018
Published: 30 October 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return