AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure

Xiao Liu1Guangzhuang Sun2Peng Chen2Junchi Liu1Zhengwei Zhang2Jia Li2Huifang Ma2Bei Zhao2Ruixia Wu2Weiqi Dang2Xiangdong Yang2Chen Dai2Xuwan Tang2Zhuojun Chen1Lili Miao1Xingqiang Liu1Bo Li1( )Yuan Liu1Xidong Duan2 ( )
Department of Applied Physics,School of Physics and Electronics, Hunan University,Changsha,410082,China;
State Key Laboratory for Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical Engineering, Hunan University,Changsha,410082,China;
Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) van der Waals (vdWs) metal-semiconductor heterostructures with atomically sharp interface and matched work functions have recently attracted great attention due to their unique electronic and optoelectronic properties.Here we report the vapor phase epitaxial growth of large-scale vertical Sb/WSe2 metal-semiconductor vdWs heterostructures with uniform stacking orientation. Compared with the growth on SiO2/Si substrate, the thickness of Sb nanosheet on WSe2 can be reduced effectively to monolayer.We construct Sb-WSe2-Au asymmetric electrodes photodiode based on the Sb/WSe2 heterostructures.Electrical transport measurements indicate that the photodiode show obvious rectifying effect.Optoelectronic characterizations show prominent photoresponse with a high photoresposivity of 364 mA/W, a fast response time of less than 8 ms, a large open-circuit voltage of 0.27 V and a maximum electrical power output of 0.11 nW.The direct growth of high-quality metal-semiconductor vdWs heterostructures may open up new realms in 2D functional electronics and optoelectronics.

References

1

Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.

2

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the schottky-mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

3

Chen, P.; Zhang, Z. W.; Duan, X. D.; Duan, X. F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129–3151.

4

Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

5

Li, B.; Xing, T.; Zhong, M. Z.; Huang, L.; Lei, N.; Zhang, J.; Li, J. B.; Wei, Z. M. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958.

6

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

7

Cui, Y.; Li, B.; Li, J. B.; Wei, Z. M. Chemical vapor deposition growth of two-dimensional heterojunctions. Sci. China Phys. Mech. Astron. 2017, 61, 016801.

8

Duan, X. D.; Wang, C.; Fan, Z.; Hao, G. L.; Kou, L. Z.; Halim, U.; Li, H. L.; Wu, X. P.; Wang, Y. C.; Jiang, J. H. et al. Synthesis of WS2xSe2–2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2016, 16, 264–269.

9

Li, B.; Huang, L.; Zhong, M. Z.; Huo, N. J.; Li, Y. T.; Yang, S. X.; Fan, C.; Yang, J. H.; Hu, W. P.; Wei, Z. M. et al. Synthesis and transport properties of large-scale alloy Co0.16Mo0.84S2 bilayer nanosheets. ACS Nano 2015, 9, 1257–1262.

10

Wang, J.; Xie, F.; Cao, X. H.; An, S. C.; Zhou, W. X.; Tang, L. M.; Chen, K. Q. Excellent thermoelectric properties in monolayer WSe2 nanoribbons due to ultralow phonon thermal conductivity. Sci. Rep. 2017, 7, 41418.

11

Li, B.; Huang, L.; Zhao, G. Y.; Wei, Z. M.; Dong, H. L.; Hu, W. P.; Wang, L. W.; Li, J. B. Large-size 2D β-Cu2S nanosheets with giant phase transition temperature lowering (120 K) synthesized by a novel method of supercooling chemical-vapor-deposition. Adv. Mater. 2016, 28, 8271–8276.

12

Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

13

Xue, X. X.; Feng, Y. X.; Liao, L.; Chen, Q. J.; Wang, D.; Tang, L. M.; Chen, K. Q. Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry. J. Phys. Condens. Mater. 2018, 30, 125001.

14

Zou, J.; Tang, L. M.; Chen, K. Q.; Feng, Y. X. Contrasting properties of hydrogenated and protonated single-layer h-BN from first-principles. J. Phys. Condens. Mater. 2018, 30, 065001.

15

Wang, Q. S.; Wen, Y.; Cai, K. M.; Cheng, R. Q.; Yin, L.; Zhang, Y.; Li, J.; Wang, Z. X.; Wang, F.; Wang, F. M. et al. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci. Adv. 2018, 4, eaap7916.

16

Wang, F.; Wang, Z. X.; Yin, L.; Cheng, R. Q.; Wang, J. J.; Wen, Y.; Shifa, T. A.; Wang, F. M.; Zhang, Y.; Zhan, X. Y. et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev. 2018, 47, 6296–6341.

17

Cheng, R. Q.; Wang, F.; Yin, L.; Wang, Z. X.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron. 2018, 1, 356–361.

18

Das, T.; Sharma, B. K.; Katiyar, A. K.; Ahn, J. H. Graphene-based flexible and wearable electronics. J. Semicond. 2018, 39, 011007.

19

Huo, N. J.; Yang, Y. J.; Li, J. B. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond. 2017, 38, 031002.

20

Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8, 923–930.

21

Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 2014, 14, 5590–5597.

22

Li, Y. M.; Li, J.; Shi, L. K.; Zhang, D.; Yang, W.; Chang, K. Light-induced exciton spin Hall effect in van der Waals heterostructures. Phys. Rev. Lett. 2015, 115, 166804.

23

Ares, P.; Aguilar-Galindo, F.; Rodríguez-San-Miguel, D.; Aldave, D. A.; Díaz-Tendero, S.; Alcamí, M.; Martín, F.; Gómez-Herrero, J.; Zamora, F. Mechanical isolation of highly stable antimonene under ambient conditions. Adv. Mater. 2016, 28, 6332–6336.

24

Zhang, S. L.; Xie, M. Q.; Li, F. Y.; Yan, Z.; Li, Y. F.; Kan, E. J.; Liu, W.; Chen, Z. F.; Zeng, H. B. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew. Chem., Int. Ed. 2016, 128, 1698–1701.

25

Wang, G. X.; Pandey, R.; Karna, S. P. Atomically thin group v elemental films: Theoretical investigations of antimonene allotropes. ACS Appl. Mater. Interfaces 2015, 7, 11490–11496.

26

Lee, J.; Tian, W. C.; Wang, W. L.; Yao, D. X. Two-dimensional pnictogen honeycomb lattice: Structure, on-site spin-orbit coupling and spin polarization. Sci. Rep. 2015, 5, 11512.

27

Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. H. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352.

28

Wu, X.; Shao, Y.; Liu, H.; Feng, Z. L.; Wang, Y. L.; Sun, J. T.; Liu, C.; Wang, J. O.; Liu, Z. L.; Zhu, S. Y. et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater. 2017, 29, 1605407.

29

Shao, Y.; Liu, Z. L.; Cheng, C.; Wu, X.; Liu, H.; Liu, C.; Wang, J. O.; Zhu, S. Y.; Wang, Y. Q.; Shi, D. X. et al. Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene. Nano Lett. 2018, 18, 2133–2139.

30

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

31

Yang, H. H.; Gao, F.; Dai, M. J.; Jia, D. C.; Zhou, Y.; Hu, P. G. Recent advances in preparation, properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond. 2017, 38, 031004.

32

Wei, Z. M.; Li, B.; Xia, C. X.; Cui, Y.; He, J.; Xia, J. B.; Li, J. B. Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods 2018, DOI: 10.1002/smtd.201800094.

33

Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 2017, 8, 1906.

34

Li, B.; Huang, L.; Zhong, M. Z.; Li, Y.; Wang, Y.; Li, J. B.; Wei, Z. M. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv. Electron. Mater. 2016, 2, 1600298.

35

Ning, F.; Wang, D.; Feng, Y. X.; Tang, L. M.; Zhang, Y.; Chen, K. Q. Strong interfacial interaction and enhanced optical absorption in graphene/ InAs and MoS2/InAs heterostructures. J. Mater. Chem. C 2017, 5, 9429–9438.

36

Li, Q. Z.; Tang, L. P.; Zhang, C. X.; Wang, D.; Chen, Q. J.; Feng, Y. X.; Tang, L. M.; Chen, K. Q. Seeking the dirac cones in the MoS2/WSe2 van der Waals heterostructure. Appl. Phys. Lett. 2017, 111, 171602.

37

Liu, F. J.; Wang, J. W.; Wang, L.; Cai, X. Y.; Jiang, C.; Wang, G. T. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond. 2017, 38, 034002.

38

Wang, Y.; Huang, L.; Wei, Z. M. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semicond. 2017, 38, 034001.

39

Huang, C.; Jin, Y. B.; Wang, W. Y.; Tang, L.; Song, C. Y.; Xiu, F. X. Manganese and chromium doping in atomically thin MoS2. J. Semicond. 2017, 38, 033004.

40

Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.

41

Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 2014, 13, 1096–1101.

42

Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

43

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

44

Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135–6141.

45

Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784–2791.

46

Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308.

47

Zou, X. M.; Huang, C. W.; Wang, L. F.; Yin, L. J.; Li, W. Q.; Wang, J. L.; Wu, B.; Liu, Y. Q.; Yao, Q.; Jiang, C. Z. et al. Dielectric engineering of a boron nitride/hafnium oxide heterostructure for high-performance 2D field effect transistors. Adv. Mater. 2016, 28, 2062–2069.

48

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

49

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

50

Fontana, M.; Deppe, T.; Boyd, A. K.; Rinzan, M.; Liu, A. Y.; Paranjape, M.; Barbara, P. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci. Rep. 2013, 3, 1634.

51

Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of schottky barrier. Sci. Adv. 2016, 2, e1600069.

52

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

53

Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.

54

Hopkins, B. J.; Riviere, J. C. Work function values from contact potential difference measurements. Br. J. Appl. Phys. 1964, 15, 941–946.

55

Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 2014, 14, 4785–4791.

56

Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257–261.

57

Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.

Nano Research
Pages 339-344
Cite this article:
Liu X, Sun G, Chen P, et al. High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. Nano Research, 2019, 12(2): 339-344. https://doi.org/10.1007/s12274-018-2220-8
Topics:

881

Views

38

Crossref

N/A

Web of Science

37

Scopus

3

CSCD

Altmetrics

Received: 15 September 2018
Revised: 07 October 2018
Accepted: 10 October 2018
Published: 29 October 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return