AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tunable photocycle kinetics of a hybrid bacteriorhodopsin/quantum dot system

Terianna J. WaxJordan A. GrecoShutang ChenNicole L. WagnerJing Zhao( )Robert R. Birge( )
55 North Eagleville Rd, Department of Chemistry,University of Connecticut,Storrs, CT,06269-3060,USA;
Show Author Information

Graphical Abstract

Abstract

The inclusion of inorganic nanoparticles in biological environments has led to the creation of hybrid nanosystems that are employed in a variety of applications. One such system includes quantum dots (QDs) coupled with the photoactive protein, bacteriorhodopsin (BR), which has been explored in developing enhanced photovoltaic devices. In this work, we have discovered that the kinetics of the BR photocycle can be manipulated using CdSe/CdS (core/shell) QDs. The photocycle lifetime of protein samples with varying QD amounts were monitored using time-resolved absorption spectroscopy. Concentration-dependent elongations of the bR and M state lifetimes were observed in the kinetic traces, thus suggesting that excitonic coupling occurs between BR and QDs. We propose that the pairing of BR with QDs has the potential to be utilized in protein-based computing applications, specifically for real-time holographic processors, which depend on the temporal dynamics of the bR and M photointermediates.

Electronic Supplementary Material

Download File(s)
12274_2018_2224_MOESM1_ESM.pdf (3.4 MB)

References

1

Parpura, V. Bionanoelectronics: Getting close to the action. Nat. Nanotechnol. 2012, 7, 143-145.

2

Noy, A. Bionanoelectronics. Adv. Mater. 2011, 23, 807-820.

3

Maine, E.; Thomas, V. J.; Bliemel, M.; Murira, A.; Utterback, J. The emergence of the nanobiotechnology industry. Nat. Nanotechnol. 2014, 9, 2-5.

4

Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543-557.

5

Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6, 12-21.

6

Alkilany, A. M.; Lohse, S. E.; Murphy, C. J. The gold standard: Gold nanoparticle libraries to understand the nano-bio interface. Acc. Chem. Res. 2013, 46, 650-661.

7

Oesterhelt, D.; Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New. Biol. 1971, 233, 149-152.

8

Luecke, H.; Schobert, B.; Richter, H. T.; Cartailler, J. P.; Lanyi, J. K. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 1999, 291, 899-911.

9

Henderson, R.; Baldwin, J. M.; Ceska, T. A.; Zemlin, F.; Beckmann, E.; Downing, K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 1990, 213, 899-929.

10

Stuart, J. A.; Birge, R. R. Characterization of the primary photochemical events in bacteriorhodopsin and rhodopsin. In Biomembranes. Lee, A. G., Ed.; JAI Press: London, 1996; pp 33-139.

11

Lozier, R. H.; Niederberger, W.; Bogomolni, R. A.; Hwang, S.; Stoeckenius, W. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane. Biochim. Biophys. Acta 1976, 440, 545-556.

12

Oesterhelt, D.; Hegemann, P.; Tittor, J. The photocycle of the chloride pump halorhodopsin. Ⅱ. Quantum yields and a kinetic model. EMBO J. 1985, 4, 2351-2356.

13

Govindjee, R.; Balashov, S. P.; Ebrey, T. G. Quantum efficiency of the photochemical cycle of bacteriorhodopsin. Biophys. J. 1990, 58, 597-608.

14

Lanyi, J. K. Bacteriorhodopsin. Annu. Rev. Physiol. 2004, 66, 665-688.

15

Hayashi, S.; Tajkhorshid, E.; Schulten, K. Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle. Biophys. J. 2002, 83, 1281-1297.

16

Edman, K.; Nollert, P.; Royant, A.; Beirhali, H.; Pebay-Peyroula, E.; Hajdu, J.; Neutze, R.; Landau, E. M. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 1999, 401, 822-826.

17

Schenkl, S.; van Mourik, F.; van der Zwan, G.; Haacke, S.; Chergui, M. Probing the ultrafast charge translocation of photoexcited retinal in bacteriorhodopsin. Science 2005, 309, 917-920.

18

Kobayashi, T.; Salto, T.; Ohtani, H. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 2001, 414, 531-534.

19

Herbst, J.; Heyne, K.; Diller, R. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Science 2002, 297, 822-825.

20

Atkinson, G. H.; Brach, T. L.; Blanchard, D.; Rumbles, G. Picosecond time-resolved resonance Raman spectroscopy of the initial trans to cis isomerization in the bacteriorhodopsin photocycle. Chem. Phys. 1989, 131, 1-15.

21

Nogly, P.; Weinert, T.; James, D. Carbajo, S.; Ozerov, D.; Furrer, A.; Gashi, D.; Borin, V.; Skopintsev, P.; Jaeger, K. et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond X-ray laser. Science, in press, DOI: 10.1126/science.aat0094.

22

Nango, E.; Royant, A.; Kubo, M.; Nakane, T.; Wickstrand, C.; Kimura, T.; Tanaka, T.; Tono, K.; Song, C. Y.; Tanaka, R. et al. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 2016, 354, 1552-1557.

23

Balashov, S. P. Protonation reactions and their coupling in bacteriorhodopsin. Biochim. Biophys. Acta 2000, 1460, 75-94.

24

Birge, R. R.; Gillespie, N. B.; Izaguirre, E. W.; Kusnetzow, A.; Lawrence, A. F.; Singh, D.; Song, Q. W.; Schmidt, E.; Stuart, J. A.; Seetharaman, S. et al. Biomolecular electronics: Protein-based associative processors and volumetric memories. J. Phys. Chem. B 1999, 103, 10746-10766.

25

He, J. A.; Samuelson, L.; Li, L.; Kumar, J.; Tripathy, S. K. Bacteriorhodopsin thin-film assemblies-Immobilization, properties, and applications. Adv. Mater. 1999, 11, 435-446.

26

Stuart, J. A.; Marcy, D. L.; Birge, R. R. Photonic and optoelectronic applications of bacteriorhodopsin. In Bioelectronic Applications of Photochromic Pigments. Dér, A.; Keszthelyi, L., Eds.; IOS Press: Szeged, Hungary, 2000; pp 16-29.

27

Tallent, J.; Song, Q. W.; Li, Z. F.; Stuart, J.; Birge, R. R. Effective photochromic nonlinearity of dried blue-membrane bacteriorhodopsin films. Opt. Lett. 1996, 21, 1339-1341.

28

Hampp, N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem. Rev. 2000, 100, 1755-1776.

29

Cutsuridis, V.; Wennekers, T. Hippocampus, microcircuits and associative memory. Neural Netw. 2009, 22, 1120-1128.

30

Reijmers, L. G.; Perkins, B. L.; Matsuo, N.; Mayford, M. Localization of a stable neural correlate of associative memory. Science 2007, 317, 1230-1233.

31

Hampp, N.; Thoma, R.; Zeisel, D.; Brüchle, C.; Oesterhelt, D. Bacteriorhodopsin variants for holographic pattern recognition. Adv. Chem. 1994, 240, 511-526.

32

Paek, E. G.; Jung, E. C. Simplified holographic associative memory using enhanced nonlinear processing with a thermoplastic plate. Opt. Lett. 1991, 16, 1034-1036.

33

Paek, E. G.; Psaltis, D. Optical associative memory using Fourier transform holograms. Opt. Eng. 1987, 26, 265428.

34

Abu-Mostafa, Y. S.; Psaltis, D. Optical neural computers. Sci. Am. 1987, 256, 88-95.

35

Popp, A.; Wolperdinger, M.; Hampp, N.; Bräuchle, C.; Oesterhelt, D. Photochemical conversion of the O-intermediate to 9-cis-retinal-containing products in bacteriorhodopsin films. Biophys. J. 1993, 65, 1449-1459.

36

Gillespie, N. B.; Wise, K. J.; Ren, L.; Stuart, J. A.; Marcy, D. L.; Hillebrecht, J.; Li, Q.; Ramos, L.; Jordan, K.; Fyvie, S. et al. Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin. J. Phys. Chem. B 2002, 106, 13352-13361.

37

Ranaghan, M. J.; Greco, J. A.; Wagner, N. L.; Grewal, R.; Rangarajan, R.; Koscielecki, J. F.; Wise, K. J.; Birge, R. R. Photochromic bacteriorhodopsin mutant with high holographic efficiency and enhanced stability via a putative self-repair mechanism. ACS Appl. Mater. Interfaces 2014, 6, 2799-2808.

38

Wagner, N. L.; Greco, J. A.; Ranaghan, M. J.; Birge, R. R. Directed evolution of bacteriorhodopsin for applications in bioelectronics. J. R. Soc. Interface 2013, 10, 20130197.

39

Hillebrecht, J. R.; Wise, K. J.; Koscielecki, J. F.; Birge, R. R. Directed evolution of bacteriorhodopsin for device applications. Methods Enzymol. 2004, 388, 333-347.

40

Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463-9475.

41

Alivisatos, A. P.; Gu, W. W.; Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 2005, 7, 55-76.

42

Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013-2016.

43

Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732-12763.

44

Griep, M. H.; Winder, E. M.; Lueking, D. R.; Garrett, G. A.; Karna, S. P.; Friedrich, C. R. Förster resonance energy transfer between core/shell quantum dots and bacteriorhodopsin. Mol. Biol. Int. 2012, 2012, 910707.

45

Rakovich, A.; Nabiev, I.; Sukhanova, A.; Lesnyak, V.; Gaponik, N.; Rakovich, Y. P.; Donegan, J. F. Large enhancement of nonlinear optical response in a hybrid nanobiomaterial consisting of bacteriorhodopsin and cadmium telluride quantum dots. ACS Nano 2013, 7, 2154-2160.

46

Rakovich, A.; Sukhanova, A.; Bouchonville, N.; Lukashev, E.; Oleinikov, V.; Artemyev, M.; Lesnyak, V.; Gaponik, N.; Molinari, M.; Troyon, M. et al. Resonance energy transfer improves the biological function of bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots. Nano Lett. 2010, 10, 2640-2648.

47

Bouchonville, N.; Molinari, M.; Sukhanova, A.; Artemyev, M.; Oleinikov, V. A.; Troyon, M.; Nabiev, I. Charge-controlled assembling of bacteriorhodopsin and semiconductor quantum dots for fluorescence resonance energy transferbased nanophotonic applications. Appl. Phys. Lett. 2011, 98, 013703.

48

Griep, M. H.; Walczak, K. A.; Winder, E. M.; Lueking, D. R.; Friedrich, C. R. Quantum dot enhancement of bacteriorhodopsin-based electrodes. Biosens. Bioelectron. 2010, 25, 1493-1497.

49

Roy, P.; Kantor-Uriel, N.; Mishra, D.; Dutta, S.; Friedman, N.; Sheves, M.; Naaman, R. Spin-controlled photoluminescence in hybrid nanoparticles purple membrane system. ACS Nano 2016, 10, 4525-4531.

50

Peck, R. F.; DasSarma, S.; Krebs, M. P. Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol. Microbiol. 2000, 35, 667-676.

51

Becher, B. M.; Cassim, J. Y. Improved isolation procedures for the purple membrane of Halobacterium halobium. Prep. Biochem. 1975, 5, 161-178.

52

Nan, W. N.; Niu, Y.; Qin, H. Y.; Cui, F.; Yang, Y.; Lai, R. C.; Lin, W. Z.; Peng, X. G. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 2012, 134, 19685-19693.

53

Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. -S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe/CdS core/shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445-451.

54

Greenhalgh, D. A.; Altenbach, C.; Hubbell, W. L.; Khorana, H. G. Locations of Arg-82, Asp-85, and Asp-96 in helix C of bacteriorhodopsin relative to the aqueous boundaries. Proc. Natl. Acad. Sci. USA 1991, 88, 8626-8630.

55

Krebs, M. P.; Behrens, W.; Mollaaghababa, R.; Khorana, H. G.; Heyn, M. P. X-ray diffraction of a cystein-containing bacteriorhodopsin mutant and its mercury derivative. Localization of an amino acid residue in the loop of an integral membrane protein. Biochemistry 1993, 32, 12830-12834.

56

Mollaaghababa, R.; Steinhoff, H. -J.; Hubbell, W. L.; Khorana, H. G. Time-resolved site-directed spin-labeling studies of bacteriorhodopsin. Loop-specific conformational changes in M. Biochemistry 2000, 39, 1120-1127.

57

Brizzolara, R. A.; Boyd, J. L.; Tate, A. E. Evidence for covalent attachment of purple membrane to a gold surface via genetic modification of bacteriorhodopsin. J. Vac. Sci. Technol. 1997, 15, 773-778.

58

Schranz, M.; Noll, F.; Hampp, N. Oriented purple membrane monolayers covalently attached to gold by multiple thiole linkages analyzed by single molecule force spectroscopy. Langmuir 2007, 23, 11134-11138.

59

Patil, A. V.; Premaruban, T.; Berthoumieu, O.; Watts, A.; Davis, J. J. Enhanced photocurrent in engineered bacteriorhodopsin monolayer films. J. Phys. Chem. B 2012, 116, 683-689.

60

Eliash, T.; Weiner, L.; Ottolenghi, M.; Sheves, M. Specific binding sites for cations in bacteriorhodopsin. Biophys. J. 2001, 81, 1155-1162.

61

Renugopalakrishnan, V.; Barbiellini, B.; King, C.; Molinari, M.; Mochalov, K.; Sukhanova, A.; Nabiev, I.; Fojan, P.; Tuller, H. L.; Chin, M. et al. Engineering a robust photovoltaic device with quantum dots and bacteriorhodopsin. J. Phys. Chem. C 2014, 118, 16710-16717.

62

Li, R.; Li, C. M.; Bao, H. F.; Bao, Q. Stationary current generated from photocycle of a hybrid bacteriorhodopsin/quantum dot bionanosystem. Appl. Phys. Lett. 2007, 91, 223901.

63

Yen, C. -W.; Chu, L. -K.; El-Sayed, M. A. Plasmonic field enhancement of the bacteriorhodopsin photocurrent during its proton pump photocycle. J. Am. Chem. Soc. 2010, 132, 7250-7251.

64

Uruga, T.; Hamanaka, T.; Kito, Y.; Uchida, I.; Nishimura, S.; Mashimo, T. Effects of volatile anesthetics on bacteriorhodopsin in purple membrane, Halobacterium halobium cells and reconstituted vesicles. Biophys. Chem. 1991, 41, 157-168.

65

Pandey, P. C.; Upadhyay, B. C.; Pandey, C. M. D.; Pathak, H. C. Dependence of M, N and O states decay kinetics of D96N bacteriorhodopsin on amine and amino compounds and its application in chemical sensing. Sens. Actuators B 1998, 46, 80-86.

66

Avi-Dor, Y.; Rott, R.; Schnaiderman, R. The effect of antibiotics on the photocycle and protoncycle of purple membrane suspensions. Biochim. Biophys. Acta 1979, 545, 15-23.

67

Chizhov, I.; Engelhard, M.; Chernavskii, D. S.; Zubov, B.; Hess, B. Temperature and pH sensitivity of the O640 intermediate of the bacteriorhodopsin photocycle. Biophys. J. 1992, 61, 1001-1006.

68

Váró, G; Lanyi, J. K. Protonation and deprotonation of the M, N, and O intermediates during the bacteriorhodopsin photocycle. Biochemistry 1990, 29, 6858-6865.

69

Kono, M.; Misra, S.; Ebrey, T. G. pH dependence of light-induced proton release by bacteriorhodopsin. FEBS Lett. 1993, 331, 31-34.

70

Greco, J. A.; N. L. Wagner, N. L.; Birge, R. R. Fourier transform holographic associative processors based on bacteriorhodopsin. Int. J. Unconv. Comput. 2012, 8, 433-457.

71

Oesterhelt, D.; Bräuchle, C.; Hampp, N. Bacteriorhodopsin: A biological material for information processing. Quart. Rev. Biophys. 1991, 24, 425-478.

72

Krivenkov, V. A.; Solovyeva, D. O.; Samokhvalov, P. S.; Brazhnik, K. I.; Kotkovskiy, G. E.; Christyakov, A. A.; Lukashev, E. P.; Nabiev, I. R. Photoinduced modification of quantum dot optical properties affects bacteriorhodopsin photocycle in a (quantum dot)-bacteriorhodopsin hybrid material. J. Phys. : Conf. Ser. 2014, 541, 012045.

73

Zaitsev, S. Y.; Lukashev, E. P.; Solovyeva, D. O.; Chistyakov, A. A.; Oleinikov, V. A. Controlled influence of quantum dots on purple membranes at interfaces. Colloids Surf. B 2014, 117, 248-251.

74

Bunkin, F. V.; Vsevolodov, N. N.; Druzhko, A. B.; Mitsner, B. I.; Prokhorov, A. M.; Savranskii, V. V.; Tkachenko, N. W.; Shevchenko, T. B. Diffraction efficiency of bacteriorhodopsin and its analogs. Sov. Tech. Phys. Lett. 1981, 7, 630-631.

75

Vsevolodov, N. N.; Poltoratskii, V. A. Holograms in biochrome, a biological photochromic material. Sov. Phys. Tech. Phys. 1985, 30, 1235-1247.

76

Korenstein, R.; Hess, B. Hydration effects on the photocycle of bacteriorhodopsin in the thin layers of purple membrane. Nature 1977, 270, 184-186.

77

Druzhko, A. B.; Chamorovsky, S. K. The cycle of photochromic reactions of a bacteriorhodopsin analog with 4-keto-retinal. BioSystems 1995, 35, 133-136.

78

Beischel, C. J.; Mani, V.; Govindjee, R.; Ebrey, T. G.; Knapp, D. R.; Crouch, R. K. Ring oxidized retinals form unusual bacteriorhodopsin analogue pigments. Photochem. Photobiol. 1991, 54, 977-983.

79

Zeisel, D.; Hampp, N. Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRwt and the variant BRD96N. J. Phys. Chem. 1992, 96, 7788-7792.

80

Thorgeirsson, T. E.; Milder, S. J.; Miercke, L. J. W.; Betlach, M. C.; Shand, R. F.; Stroud, R. M.; Kliger, D. S. Effects of Asp-96 → Asn, Asp-85 → Asn, and Arg-82 → Gln single state substitutions on the photocycle of bacteriorhodopsin. Biochemistry 1991, 30, 9133-9142.

81

Cao, Y.; Brown, L. S.; Needleman, R.; Lanyi, J. K. Relationship of proton uptake on the cytoplasmic surface and reisomerization of the retinal in the bacteriorhodopsin photocycle: An attempt to understand the complex kinetics of the pH changes and the N and O intermediates. Biochemistry 1993, 32, 10239-10248.

82

Song, Q. W.; Zhang, C. P.; Gross, R.; Birge, R. Optical limiting by chemically enhanced bacteriorhodopsin films. Opt. Lett. 1993, 18, 775-777.

83

Schobert, B.; Cupp-Vickery, J.; Hornak, V.; Smith, S. O.; Lanyi, J. K. Crystallographic structure of the K intermediate of bacteriorhodopsin: Conservation of free energy after photoisomerization of the retinal. J. Mol. Biol. 2002, 321, 715-726.

84

Chu, L. -K.; Yen, C. -W.; El-Sayed, M. A. On the mechanism of the plasmonic field enhancement of the solar-to-electric energy conversion by the other photosynthetic system in nature (bacteriorhodopsin): Kinetic and spectroscopic study. J. Phys. Chem. C 2010, 114, 15358-15363.

85

Biesso, A.; Qian, W.; Huang, X. H.; El-Sayed, M. A. Gold nanoparticles surface plasmon field effects on the proton pump process of the bacteriorhodopsin photosynthesis. J. Am. Chem. Soc. 2009, 131, 2442-2443.

86

Rakovich, A.; Donegan, J. F.; Oleinikov, V.; Molinari, M.; Sukhanova, A.; Nabiev, I.; Rakovich, Y. P. Linear and nonlinear optical effects induced by energy transfer from semiconductor nanoparticles to photosynthetic biological systems. J. Photochem. Photobiol. C 2014, 20, 17-32.

87

Griep, M.; Mallick, G.; Lueking, D. R.; Friedrich, C. R.; Karna, S. P. Integration of optical protein and quantum dot films for biosensing. In Proceedings of the 8th IEEE Conference on Nanotechnology, Arlington, Texas, USA, 2008, pp 657-659.

88

Lee, T. -Y.; Yeh, V.; Chuang, J. L.; Chung Chan, J. C.; Chu, L. -K.; Yu, T. -Y. Tuning the photocycle kinetics of bacteriorhodopsin in lipid nanodiscs. Biophys. J. 2015, 109, 1899-1906.

89

Drachev, A. L.; Drachev, L. A.; Kaulen, A. D.; Khitrina, L. V. The action of lanthanum ions and formaldehyde on the proton-pumping function of bacteriorhodopsin. Eur. J. Biochem. 1984, 138, 349-356.

90

Hildebrandt, N.; Spillmann, C. M.; Algar, W. R.; Pons, T.; Stewart, M. H.; Oh, E.; Susumu, K.; Díaz, S. A.; Delehanty, J. B.; Medintz, I. L. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev. 2017, 117, 536-711.

91

Stewart, M. H.; Huston, A. L.; Scott, A. M.; Oh, E.; Algar, W. R.; Deschamps, J. R.; Susumu, K.; Jain, V.; Prasuhn, D. E.; Blanco-Canosa, J. et al. Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot-fullerene conjugates. ACS Nano 2013, 7, 9489-9505.

92

Allam, N. K.; Yen, C. -W.; Near, R. D.; El-Sayed, M. A. Bacteriorhodopsin/ TiO2 nanotube arrays hybrid system for enhanced photoelectrochemical water splitting. Energy Environ. Sci. 2011, 4, 2909-2914.

Nano Research
Pages 365-373
Cite this article:
Wax TJ, Greco JA, Chen S, et al. Tunable photocycle kinetics of a hybrid bacteriorhodopsin/quantum dot system. Nano Research, 2019, 12(2): 365-373. https://doi.org/10.1007/s12274-018-2224-4
Topics:

719

Views

4

Crossref

N/A

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 03 August 2018
Revised: 12 October 2018
Accepted: 13 October 2018
Published: 08 November 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return