Energy and environmental issues presently attract a great deal of scientific attention. Recently, two-dimensional MXenes and MXene-based nanomaterials have attracted increasing interest because of their unique properties (e.g., remarkable safety, a very large interlayer spacing, environmental flexibility, a large surface area, and thermal conductivity). In 2011, multilayered MXenes (Ti3C2Tx, a new family of two-dimensional (2D) materials) produced by etching an A layer from a MAX phase of Ti3AlC2, were first described by researchers at Drexel University. The term "MXene" was coined to distinguish this new family of 2D materials from graphene, and applies to both the original MAX phases and MXenes fabricated from them. We present a comprehensive review of recent studies on energy and environmental applications of MXene and MXene-based nanomaterials, including energy conversion and storage, adsorption, membrane, photocatalysis, and antimicrobial. Future research needs are discussed briefly with current challenges that must be overcome before we completely understand the extraordinary properties of MXene and MXene-based nanomaterials.
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature2012, 488, 294–303.
Lubchenco, J. Entering the century of the environment: A new social contract for science. Science1998, 279, 491–497.
Hoque, M. M.; Hannan, M. A.; Mohamed, A.; Ayob. A. Battery charge equalization controller in electric vehicle applications: A review. Renew. Sust. Energy Rev. 2017, 75, 1363–1385.
Telaretti, E.; Dusonchet, L. Stationary battery technologies in the U.S. : Development trends and prospects. Renew. Sust. Energy Rev. 2017, 75, 380–392.
Sun, S. J.; Liao, C.; Hafez, A. M.; Zhu, H. L.; Wu, S. P. Two-dimensional MXenes for energy storage. Chem. Eng. J. 2018, 338, 27–45.
Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.
Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science2011, 332, 1537–1541.
Farha, O. K.; Yazaydın, A. Ö.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2010, 2, 944–948.
Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.
Lukatskaya M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science2013, 341, 1502–1505.
Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide "clay" with high volumetric capacitance. Nature2014, 516, 78–81.
Wu, S. P.; Xu, R.; Lu, M. J.; Ge, R. Y.; Iocozzia, J.; Han, C. P.; Jiang, B. B.; Lin, Z. Q. Graphene-containing nanomaterials for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1500400.
Wang, F.; Yang, C. H.; Duan, M.; Tang, Y.; Zhu, J. F. TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens. Bioelectron. 2015, 74, 1022–1028.
Levi, M. D.; Lukatskaya, M. R.; Sigalov, S.; Beidaghi, M.; Shpigel, N.; Daikhin, L.; Aurbach, D.; Barsoum, M. W.; Gogotsi, Y. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 2015, 5, 1400815
Heo, J.; Kim, H.; Her, N.; Lee, S.; Park, Y. G.; Yoon, Y. Natural organic matter removal in single-walled carbon nanotubes-ultrafiltration membrane systems. Desalination2012, 298, 75–84.
Im, J. K.; Heo, J.; Boateng, L. K.; Her, N.; Flora, J. R. V.; Yoon, J.; Zoh, K. D.; Yoon, Y. Ultrasonic degradation of acetaminophen and naproxen in the presence of single-walled carbon nanotubes. J. Hazard. Mater. 2013, 254–255, 284–292.
Nam, S. W.; Jung, C.; Li, H.; Yu, M.; Flora, J. R. V.; Boateng, L. K.; Her, N.; Zoh, K. D.; Yoon, Y. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution. Chemosphere2015, 136, 20–26.
Song, B.; Xu, P.; Zeng, G. M.; Gong, J. L.; Zhang, P.; Feng, H. P.; Liu, Y.; Ren, X. Y. Carbon nanotube-based environmental technologies: The adopted properties, primary mechanisms, and challenges. Rev. Environ. Sci. Biotechnol. 2018, 17, 571–590.
Zhu, Y. Q.; Sun, W. M.; Chen, W. X.; Cao, T.; Xiong, Y.; Luo, J.; Dong, J. C.; Zheng, L. R.; Zhang, J.; Wang, X. L. et al. Scale-up biomass pathway to cobalt single-site catalysts anchored on N-doped porous carbon nanobelt with ultrahigh surface area. Adv. Funct. Mater. 2018, 28, 1802167.
Zhu, Y. Q.; Cao, C. B.; Tao, S.; Chu, W. S.; Wu, Z. Y.; Li, Y. D. Ultrathin nickel hydroxide and oxide nanosheets: Synthesis, characterizations and excellent supercapacitor performances. Sci. Rep. 2014, 4, 5787.
Zhu, Y. Q.; Cao, C. B.; Zhang, J. T.; Xu, X. Y. Two-dimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A. 2015, 3, 9556–9564.
Zhu, Y. Q.; Guo, H. Z.; Zhai, H. Z.; Cao, C. B. Microwave-assisted and gram-scale synthesis of ultrathin SnO2 nanosheets with enhanced lithium storage properties. ACS Appl. Mater. Interfaces2015, 7, 2745–2753.
Zhu, Y. Q.; Cao, C. B. A simple synthesis of two-dimensional ultrathin nickel cobaltite nanosheets for electrochemical lithium storage. Electrochim. Acta2015, 176, 141–148.
Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. in press, DOI: 10.1007/ s40843-018-9324-0.
Bo, Z.; Mao, S.; Han, Z. J.; Cen, K. F.; Chen, J. H.; Ostrikov, K. Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 2015, 44, 2108–2121.
Wang, Q.; Guo, X. F.; Cai, L. C.; Cao, Y.; Gan, L.; Liu, S.; Wang, Z. X.; Zhang, H. T.; Li, L. D. TiO2-decorated graphenes as efficient photoswitches with high oxygen sensitivity. Chem. Sci. 2011, 2, 1860–1864.
Chang, C. F.; Truong, Q. D.; Chen, J. R. Graphene sheets synthesized by ionic-liquid-assisted electrolysis for application in water purification. Appl. Surf. Sci. 2013, 264, 329–334.
Huang, Z. H.; Zheng, X. Y.; Lv, W.; Wang, M.; Yang, Q. H.; Kang, F. Y. Adsorption of lead(Ⅱ) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir2011, 27, 7558–7562.
Leng, Y. Q.; Guo, W. L.; Su, S. N.; Yi, C. L.; Xing, L. T. Removal of antimony(Ⅲ) from aqueous solution by graphene as an adsorbent. Chem. Eng. J. 2012, 211–212, 406–411.
Apul, O. G.; Wang, Q. L.; Zhou, Y.; Karanfil. T. Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon. Water Res. 2013, 47, 1648–1654.
Bi, H. C.; Xie, X.; Yin, K. B.; Zhou, Y. L.; Wan, S.; He, L. B.; Xu, F.; Banhart, F.; Sun, L. T.; Ruoff, R. S. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 2012, 22, 4421–4425.
Cai, N.; Larese-Casanova, P. Application of positively-charged ethylenediamine-functionalized graphene for the sorption of anionic organic contaminants from water. J. Environ. Chem. Eng. 2016, 4, 2941–2951.
Chen, X. X.; Chen, B. L. Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environ. Sci. Technol. 2015, 49, 6181–6189.
Liu, T. H.; Li, Y. H.; Du, Q. J.; Sun, J. K.; Jiao, Y. Q.; Yang, G. M.; Wang, Z. H.; Xia, Y. Z.; Zhang, W.; Wang, K. L. et al. Adsorption of methylene blue from aqueous solution by graphene. Colloids. Surf. B Biointerfaces2012, 90, 197–203.
Pei, Z. G.; Li, L. Y.; Sun, L. X.; Zhang, S. Z.; Shan, X. Q.; Yang, S.; Wen, B. Adsorption characteristics of 1, 2, 4-trichlorobenzene, 2, 4, 6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon2013, 51, 156–163.
Raad, M. T.; Behnejad, H.; El Jamal, M. Equilibrium and kinetic studies for the adsorption of benzene and toluene by graphene nanosheets: A comparison with carbon nanotubes. Surf. Interface Anal. 2016, 48, 117–125.
Ayati, A.; Shahrak, M. N.; Tanhaei, B.; Sillanpää, M. Emerging adsorptive removal of azo dye by metal-organic frameworks. Chemosphere2016, 160, 30–44.
Huang, L. J.; He, M.; Chen, B. B.; Hu, B. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere2018, 199, 435–444.
Zhong, Y.; Xia, X. H.; Shi, F.; Zhan, J. Y.; Tu, J. P.; Fan, H. J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286.
Ding, L.; Wei, Y. Y.; Wang, Y. J.; Chen, H. B.; Caro, J.; Wang, H. H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. , Int. Ed. 2017, 56, 1825–1829.
Han, R. L.; Ma, X. F.; Xie, Y. L.; Teng, D.; Zhang, S. H. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. RSC. Adv. 2017, 7, 56204–56210.
Mashtalir, O.; Cook, K. M.; Mochalin, V. N.; Crowe, M.; Barsoum, M. W.; Gogotsi, Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A2014, 2, 14334–14338.
Zou, G. D.; Guo, J. X.; Peng, Q. M.; Zhou, A. G.; Zhang, Q. R.; Liu, B. Z. Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J. Mater. Chem. A2016, 4, 489–499.
Chaudhari, N. K.; Jin, H.; Kim, B.; Baek, D. S.; Joo, S. H.; Lee, K. MXene: An emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A2017, 5, 24564–24579.
Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic properties and applications of MXenes: A theoretical review. J. Mater. Chem. C2017, 5, 2488–2503.
Zhu, J. Y.; Hou, J. W.; Uliana, A.; Zhang, Y. T.; Tian, M. M.; van der Bruggen, B. The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. J. Mater. Chem. A2018, 6, 3773–3792.
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.
Naguib, M.; Gogotsi, Y. Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 2015, 48, 128–135.
Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.
Zhao, Y.; Watanabe, K.; Hashimoto, K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer. J. Am. Chem. Soc. 2012, 134, 19528–19531.
Khazaei, M.; Arai, M.; Sasaki, T.; Estili, M.; Sakka, Y. Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys. 2014, 16, 7841–7849.
Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene). Chem. Mater. 2017, 29, 7633–7644.
Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P. L.; Simon, P.; Barsoum, M. W.; Gogotsi Y. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 2012, 16, 61–64.
Ren, C. E.; Zhao, M. Q.; Makaryan, T.; Halim, J.; Boota, M.; Kota, S.; Anasori, B.; Barsoum, M. W.; Gogotsi, Y. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. Chemelectrochem. 2016, 3, 689–693.
Tang, Q.; Zhou, Z.; Shen, P. W. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 2012, 134, 16909–16916.
Chen, C.; Boota, M.; Urbankowski, P.; Anasori B.; Miao, L.; Jiang, J. J.; Gogotsi, Y. Effect of glycine functionalization of 2D titanium carbide (MXene) on charge storage. J. Mater. Chem. A2018, 6, 4617–4622.
Couly, C.; Alhabeb, M.; van Aken, K. L.; Kurra, N.; Gomes, L.; Navarro-Suarez, A. M.; Anasori, B.; Alshareef, H. N.; Gogotsi, Y. Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv. Electron. Mater. 2018, 4, 1700339.
Fu, Q. S.; Wang, X. Y.; Zhang, N.; Wen, J.; Li, L.; Gao, H.; Zhang, X. T. Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor. J. Colloid. Interf. Sci. 2018, 511, 128–134.
Liu, F. F.; Zhou, J.; Wang, S. W.; Wang, B. X.; Shen, C.; Wang, L. B.; Hu, Q. K.; Huang, Q.; Zhou, A. G. Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. J. Electrochem. Soc. 2017, 164, A709–A713.
Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano2012, 6, 1322–1331.
Meshkian, R.; Tao, Q. Z.; Dahlqvist, M.; Lu, J.; Hultman, L.; Rosen, J. Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater. 2017, 125, 476–480.
Zhou, J.; Zha, X. H.; Chen, F. Y.; Ye, Q.; Eklund, P.; Du, S. Y.; Huang, Q. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. , Int. Ed. 2016, 55, 5008–5013.
Yang, J.; Naguib, M.; Ghidiu, M.; Pan, L. M.; Gu, J.; Nanda, J.; Halim, J.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional Nb-based M4C3 solid solutions (MXenes). J. Am. Ceram. Soc. 2016, 99, 660–666.
Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969.
Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D. Q.; Kota, S.; Walsh, P. L.; Zhao, M. Q.; Shenoy, V. B.; Barsoum, M. W.; Gogotsi, Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale2016, 8, 11385–11391.
Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Näslund, L. Å.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014, 26, 2374–2381.
Ghidiu, M.; Naguib, M.; Shi, C.; Mashtalir, O.; Pan, L. M.; Zhang, B.; Yang, J.; Gogotsi, Y.; Billinge, S. J. L.; Barsoum, M. W. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem. Commun. 2014, 50, 9517–9520.
Mashtalir, O.; Lukatskaya, M. R.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 2015, 27, 3501–3506.
Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B. C.; Hultman, L.; Kent, P. R. C.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano2015, 9, 9507–9516.
Tao, Q. Z.; Dahlqvist, M.; Lu, J.; Kota, S.; Meshkian, R.; Halim, J.; Palisaitis, J.; Hultman, L.; Barsoum, M. W.; Persson, P. O. Å. et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 2017, 8, 14949.
Karlsson, L. H.; Birch, J.; Halim, J.; Barsoum, M. W.; Persson, P. O. Å. Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett. 2015, 15, 4955–4960.
Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C. Y.; Venkataramanan, N. S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192.
Guo, Z. L.; Zhou, J.; Si, C.; Sun, Z. M. Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys. Chem. Chem. Phys. 2015, 17, 15348–15354.
Fu, Z. H.; Zhang, Q. F.; Legut, D.; Si, C.; Germann, T. C.; Lookman, T.; Du, S. Y.; Francisco. J. S.; Zhang, R. F. Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Phys. Rev. B2016, 94, 104103.
Guo, Z. L.; Zhu, L. G.; Zhou, J.; Sun, Z. M. Microscopic origin of MXenes derived from layered MAX phases. RSC Adv. 2015, 5, 25403–25408.
Khazaei, M.; Arai, M.; Sasaki, T.; Estili, M.; Sakka, Y. Trends in electronic structures and structural properties of MAX phases: A first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases. J. Phys. Condens. Matter. 2014, 26, 505503.
Weng, H. M.; Ranjbar, A.; Liang, Y. Y.; Song, Z. D.; Khazaei, M.; Yunoki, S.; Arai, M.; Kawazoe, Y.; Fang, Z.; Dai, X. Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Phys. Rev. B2015, 92, 075436.
Nava, A.; Giuliano, R.; Campagnano, G.; Giuliano, D. Transfer matrix approach to the persistent current in quantum rings: Application to hybrid normal-superconducting rings. Phys. Rev. B2016, 94, 205125.
Mariano, M.; Mashtalir, O.; Antonio, F. Q.; Ryu, W. H.; Deng, B. C.; Xia, F. N.; Gogotsi, Y.; Taylor, A. D. Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale2016, 8, 16371–16378.
Hu, J. P.; Xu, B.; Ouyang, C. Y.; Yang, S. A.; Yao, Y. G. Investigations on V2C and V2CX2 (X = F, OH) monolayer as a promising anode material for Li ion batteries from first-principles calculations. J. Phys. Chem. C2014, 118, 24274–24281.
Zhao, S. J.; Kang, W.; Xue, J. M. Manipulation of electronic and magnetic properties of M2C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains. Appl. Phys. Lett. 2014, 104, 133106.
Gao, G. Y.; Ding, G. Q.; Li, J.; Yao, K. L.; Wu, M. H.; Qian, M. C. Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale2016, 8, 8986–8994.
Berdiyorov, G. R. Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene. Europhys. Lett. 2015, 111, 67002.
Mao, J. J.; Iocozzia, J.; Huang, J. Y.; Meng, K.; Lai, Y. K.; Lin, Z. Q. Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 2018, 11, 772–799.
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.
Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.
Xue, Q.; Pei, Z. X.; Huang, Y.; Zhu, M. S.; Tang, Z. J.; Li, H. F.; Huang, Y.; Li, N.; Zhang, H. Y.; Zhi, C. Y. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A2017, 5, 20818–20823.
Zhang, Z. W.; Li, H. N.; Zou, G. D.; Fernandez, C.; Liu, B. Z.; Zhang, Q. R.; Hu, J.; Peng, Q. M. Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustain. Chem. Eng. 2016, 4, 6763–6771.
Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.
Zhao, L.; Dong, B. L.; Li, S. Z.; Zhou, L. J.; Lai, L. F.; Wang, Z. W.; Zhao, S. L.; Han, M.; Gao, K.; Lu, M. et al. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano2017, 11, 5800–5807.
Yu, M. Z.; Zhou, S.; Wang, Z. Y.; Zhao, J. J.; Qiu, J. S. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy2018, 44, 181–190.
Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science2008, 321, 1072–1075.
She, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science2017, 355, eaad4998.
Ling, T.; Yan, D. Y.; Jiao, Y.; Wang, H.; Zheng, Y.; Zheng, X. L.; Mao, J.; Du, X. W.; Hu, Z. P.; Jaroniec, M. et al. Engineering surface atomic structure of single-crystal cobalt (Ⅱ) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876.
Ganesan, P.; Sivanantham, A.; Shanmugam, S. Inexpensive electrochemical synthesis of nickel iron sulphides on nickel foam: Super active and ultra-durable electrocatalysts for alkaline electrolyte membrane water electrolysis. J. Mater. Chem. A2016, 4, 16394–16402.
Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem Ⅱ at a resolution of 1.9 Å. Nature2011, 473, 55–60.
Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature2001, 414, 332–337.
Turner, J. A. Sustainable hydrogen production. Science2004, 305, 972–974.
Safizadeh, F.; Ghali, E.; Houlachi, G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions - A review. Int. J. Hydrog. Energy2015, 40, 256–274.
Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B.; C. Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.
Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. , Int. Ed. 2015, 54, 7399–7404.
Li, S.; Tuo, P.; Xie, J. F.; Zhang, X. D.; Xu, J. G.; Bao, J.; Pan, B. C.; Xie, Y. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy2018, 47, 512–518.
Acar, C.; Dincer, I.; Naterer, G. F. Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int. J. Energy Res. 2016, 40, 1449–1473.
Li, J. T.; Wu, N. Q. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384.
Li, W.; Gao, R.; Chen, M.; Zhou, S. X.; Wu, L. M. Facile synthesis and unique photocatalytic property of niobium pentoxide hollow spheres and the high optoelectronic performance of their nanofilm. J. Colloid Interface Sci. 2013, 411, 220–229.
Su, T. M.; Peng, R.; Hood, Z. D.; Naguib, M.; Ivanov, I. N.; Keum, J. K.; Qin, Z. Z.; Guo, Z. H.; Wu, Z. L. One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem. 2018, 11, 688–699.
An, X. Q.; Wang, W.; Wang, J. P.; Duan, H. Z.; Shi, J. T.; Yu, X. L. The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 2018, 20, 11405–11411.
Guo, Z. L.; Zhou, J.; Zhu, L. G.; Sun, Z. M. MXene: A promising photocatalyst for water splitting. J. Mater. Chem. A2016, 4, 11446–11452.
Li, N.; Chen, X. Z.; Ong, W. J.; MacFarlane, D. R.; Zhao, X. J.; Cheetham, A. K.; Sun, C. H. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano2017, 11, 10825–10833.
Pandey, M.; Thygesen, K. S. Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study. J. Phys. Chem. C2017, 121, 13593–13598.
Guo, Z. L.; Zhou, J.; Sun, Z. M. New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A2017, 5, 23530–23535.
Jiang, Z.; Wang, P.; Jiang, X.; Zhao, J. J. MBene (MnB): A new type of 2D metallic ferromagnet with high Curie temperature. Nanoscale Horiz. 2018, 3, 335–341.
Yang, X. W.; Gao, N.; Zhou, S.; Zhao, J. J. MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics. Phys. Chem. Chem. Phys. 2018, 20, 19390–19397.
Zhou, S.; Yang, X. W.; Pei, W.; Liu, N. S.; Zhao, J. J. Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale2018, 10, 10876–10883.
Díaz-González, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafáfila-Robles, R. A review of energy storage technologies for wind power applications. Renew. Sust. Energy Rev. 2012, 16, 2154–2171.
Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D.; Zhao, X. B.; Fan, H. J. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano2012, 6, 5531–5538.
Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1894.
Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano2016, 10, 2491–2499.
Xia, Q. X.; Shinde, N. M.; Yun, J. M.; Zhang, T. F.; Mane, R. S.; Mathur, S.; Kim, K. H. Bismuth oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochim. Acta2018, 271, 351–360.
Rakhi, R. B.; Ahmed, B.; Hedhili, M. N.; Anjum, D. H.; Alshareef, H. N. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 2015, 27, 5314–5323.
Faraji, S.; Ani, F. N. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors-A review. J. Power Sources2014, 263, 338–360.
Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.
Xiao, Y.; Hwang, J. Y.; Sun, Y. K. Transition metal carbide-based materials: Synthesis and applications in electrochemical energy storage. J. Mater. Chem. A2016, 4, 10379–10393.
Zhou, J.; Zha, X. H.; Zhou, X. B.; Chen, F. Y.; Gao, G. L.; Wang, S. W.; Shen, C.; Chen, T.; Zhi, C. Y.; Eklund, P. et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano2017, 11, 3841–3850.
Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy2017, 2, 17089.
Chen, C.; Xie, X. Q.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M. Q.; Urbankowski, P.; Miao, L.; Jiang, J. J.; Gogotsi, Y. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. , Int. Ed. 2018, 57, 1846–1850.
Chao, Y. F.; Jalili, R.; Ge, Y.; Wang, C. Y.; Zheng, T.; Shu, K. W.; Wallace, G. G. Self-assembly of flexible free-standing 3D porous MoS2-reduced graphene oxide structure for high-performance lithium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700234.
Xuan, J. N.; Wang, Z. Q.; Chen, Y. Y.; Liang, D. J.; Cheng, L.; Yang, X. J.; Liu, Z.; Ma, R. Z.; Sasaki, T.; Geng, F. X. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. , Int. Ed. 2016, 55, 14569–14574.
Huang, J. M.; Meng, R. J.; Zu, L. H.; Wang, Z. J.; Feng, N.; Yang, Z. Y.; Yu, Y.; Yang, J. H. Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries. Nano Energy2018, 46, 20–28.
Chowdhury, S.; Mazumder, M. A. J.; Al-Attas, O.; Husain, T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016, 569–570, 476–488.
Huber, M.; Welker, A.; Helmreich, B. Critical review of heavy metal pollution of traffic area runoff: Occurrence, influencing factors, and partitioning. Sci. Total Environ. 2016, 541, 895–919.
Ryu, J.; Yoon, Y.; Oh, J. Occurrence of endocrine disrupting compounds and pharmaceuticals in 11 WWTPs in Seoul, Korea. KSCE J. Civil Eng. 2011, 15, 57–64.
Yoon, Y.; Ryu, J.; Oh, J.; Choi, B. G.; Snyder, S. A. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci. Total Environ. 2010, 408, 636–643.
Grandclément, C.; Seyssiecq, I.; Piram, A.; Wong-Wah-Chung, P.; Vanot, G.; Tiliacos, N.; Roche, N.; Doumenq, P. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. Water Res. 2017, 111, 297–317.
Yi, X. Z.; Tran, N. H.; Yin, T. R.; He, Y. L.; Gin, K. Y. H. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system. Water Res. 2017, 121, 46–60.
Al-Hamadani, Y. A. J.; Chu, K. H.; Flora, J. R. V.; Kim, D. H.; Jang, M.; Sohn, J.; Joo, W.; Yoon, Y. Sonocatalytical degradation enhancement for ibuprofen and sulfamethoxazole in the presence of glass beads and single-walled carbon nanotubes. Ultrason. Sonochem. 2016, 32, 440–448.
Chu, K. H.; Fathizadeh, M.; Yu, M.; Flora, J. R. V.; Jang, A.; Jang, M.; Park, C. M.; Yoo, S. S.; Her, N.; Yoon, Y. Evaluation of removal mechanisms in a graphene oxide-coated ceramic ultrafiltration membrane for retention of natural organic matter, pharmaceuticals, and inorganic salts. ACS Appl. Mater. Interfaces2017, 9, 40369–40377.
Chu, K. H.; Huang, Y.; Yu, M.; Her, N.; Flora, J. R. V.; Park, C. M.; Kim, S.; Cho, J.; Yoon, Y. Evaluation of humic acid and tannic acid fouling in graphene oxide-coated ultrafiltration membranes. ACS Appl. Mater. Interfaces2016, 8, 22270–22279.
Heo, J.; Boateng, L. K.; Flora, J. R. V.; Lee, H.; Her, N.; Park, Y. G.; Yoon, Y. Comparison of flux behavior and synthetic organic compound removal by forward osmosis and reverse osmosis membranes. J. Membrane Sci. 2013, 443, 69–82.
Jung, C.; Park, J.; Lim, K. H.; Park, S.; Heo, J.; Her, N.; Oh, J.; Yun, S.; Yoon Y. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. J. Hazard. Mater. 2013, 263, 702–710.
Jung, C.; Son, A.; Her, N.; Zoh, K. D.; Cho, J.; Yoon, Y. Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. J. Ind. Eng. Chem. 2015, 27, 1–11.
Nam, S. W.; Yoon, Y.; Choi, D. J.; Zoh, K. D. Degradation characteristics of metoprolol during UV/chlorination reaction and a factorial design optimization. J. Hazard. Mater. 2015, 285, 453–463.
Park, C. M.; Han, J.; Chu, K. H.; Al-Hamadani, Y. A. J.; Her, N.; Heo, J.; Yoon, Y. Influence of solution pH, ionic strength, and humic acid on cadmium adsorption onto activated biochar: Experiment and modeling. J. Ind. Eng. Chem. 2017, 48, 186–193.
Park, C. M.; Heo, J.; Wang, D. J.; Su, C. M.; Yoon, Y. Heterogeneous activation of persulfate by reduced graphene oxide-elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water. Appl. Catal. B Environ. 2018, 225, 91–99.
Park, C. M.; Heo, J.; Yoon, Y. Oxidative degradation of bisphenol A and 17α-ethinyl estradiol by Fenton-like activity of silver nanoparticles in aqueous solution. Chemosphere2017, 168, 617–622.
Park, J. S.; Her, N.; Oh, J.; Yoon, Y. Sonocatalytic degradation of bisphenol A and 17α-ethinyl estradiol in the presence of stainless steel wire mesh catalyst in aqueous solution. Sep. Purif. Technol. 2011, 78, 228–236.
Sinha, S.; Amy, G.; Yoon, Y.; Her, N. Arsenic removal from water using various adsorbents: Magnetic ion exchange resins, hydrous ion oxide particles, granular ferric hydroxide, activated alumina, sulfur modified iron, and iron oxide-coated microsand. Environ. Eng. Res. 2011, 16, 165–173.
Chowdhury, S.; Balasubramanian, R. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv. Colloid Interface Sci. 2014, 204, 35–56.
Mashtalir, O.; Naguib, M.; Mochalin, V. N.; Dall'Agnese, Y.; Heon, M.; Barsoum, M. W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716.
Zheng, W.; Zhang, P. G.; Tian, W. B.; Qin, X.; Zhang, Y. M.; Sun, Z. M. Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Mater. Chem. Phys. 2018, 206, 270–276.
Fard, A. K.; McKay, G.; Chamoun, R.; Rhadfi, T.; Preud'Homme, H.; Atieh, M. A. Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem. Eng. J. 2017, 317, 331–342.
Shahzad, A.; Rasool, K.; Miran, W.; Nawaz, M.; Jang, J.; Mahmoud, K. A.; Lee, D. S. Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. J. Hazard. Mater. 2018, 344, 811–818.
Shahzad, A.; Rasool, K.; Miran, W.; Nawaz, M.; Jang, J.; Mahmoud, K. A.; Lee, D. S. Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 2017, 5, 11481– 11488.
Wang, L.; Tao, W. Q.; Yuan, L. Y.; Liu, Z. R.; Huang, Q.; Chai, Z. F.; Gibson, J. K.; Shi, W. Q. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem. Commun. 2017, 53, 12084–12087.
Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80.
Ghosh, D.; Bhattacharyya, K. G. Adsorption of methylene blue on kaolinite. Appl. Clay Sci. 2002, 20, 295–300.
Ai, L. H.; Zhang, C. Y.; Chen, Z. L. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J. Hazard. Mater. 2011, 192, 1515–1524.
Bradder, P.; Ling, S. K.; Wang, S. B.; Liu, S. M. Dye adsorption on layered graphite oxide. J. Chem. Eng. Data. 2011, 56, 138–141.
Liu, P.; Zhang, L. X. Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep. Purif. Technol. 2007, 58, 32–39.
Rytwo, G.; Nir, S.; Margulies, L.; Casal, B.; Merino, J.; Ruiz-Hitzky, E.; Serratosa, J. M. Adsorption of monovalent organic cations on sepiolite: Experimental results and model calculations. Clay Clay Miner. 1998, 46, 340–348.
Hadi, P.; To, M. H.; Hui, C. W.; Lin, C. S. K.; McKay, G. Aqueous mercury adsorption by activated carbons. Water Res. 2015, 73, 37–55.
Collins, I. R. Surface electrical properties of barium sulfate modified by adsorption of poly α, β aspartic acid. J. Colloid Interface Sci. 1999, 212, 535–544.
Aïssa, B.; Ali, A.; Mahmoud, K. A.; Haddad, T.; Nedil, M. Transport properties of a highly conductive 2D Ti3C2Tx MXene/graphene composite. Appl. Phys. Lett. 2016, 109, 043109.
Xing, H. T.; Chen, J. H.; Sun, X.; Huang, Y. H.; Su, Z. B.; Hu, S. R.; Weng, W.; Li, S. X.; Guo, H. X.; Wu, W. B. et al. NH2-rich polymer/graphene oxide use as a novel adsorbent for removal of Cu(Ⅱ) from aqueous solution. Chem. Eng. J. 2015, 263, 280–289.
Hidmi, L.; Edwards, M. Role of temperature and pH in Cu(OH)2 solubility. Environ. Sci. Technol. 1999, 33, 2607–2610.
Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.
Rachel, A.; Subrahmanyam, M.; Boule, P. Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl. Catal. B Environ. 2002, 37, 301–308.
Yuan, X. Y.; Wang, Y. F.; Wang, J.; Zhou, C.; Tang, Q.; Rao, X. B. Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal. Chem. Eng. J. 2013, 221, 204–213.
Sahraei, R.; Pour, Z. S.; Ghaemy, M. Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: Removal of heavy metals and dyes from water. J. Clean. Prod. 2017, 142, 2973–2984.
Torab-Mostaedi, M.; Ghaemi, A.; Ghassabzadeh, H.; Ghannadi-Maragheh, M. Removal of strontium and barium from aqueous solutions by adsorption onto expanded Perlite. Can. J. Chem. Eng. 2011, 89, 1247–1254.
Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417.
Peng, Q. M.; Guo, J. X.; Zhang, Q. R.; Xiang, J. Y.; Liu, B. Z.; Zhou, A. G.; Liu, R. P.; Tian, Y. J. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 2014, 136, 4113–4116.
Genç-Fuhrman, H.; Tjell, J. C.; McConchie, D. Adsorption of arsenic from water using activated neutralized red mud. Environ. Sci. Technol. 2004, 38, 2428–2434.
Argun, M. E.; Dursun, S.; Karatas, M. Removal of Cd(Ⅱ), Pb(Ⅱ), Cu(Ⅱ) and Ni(Ⅱ) from water using modified pine bark. Desalination2009, 249, 519–527.
Rahman, M. M.; Adil, M.; Yusof, A. M.; Kamaruzzaman, Y. B.; Ansary, R. H. Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells. Materials2014, 7, 3634–3650.
Yoon, J.; Amy, G.; Chung, J.; Sohn, J.; Yoon, Y. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Chemosphere2009, 77, 228–235.
Basu, S.; Mukherjee, S.; Balakrishnan, M.; Deepthi, M. V.; Sailaja, R. R. N. Polysulfone/nanocomposites mixed matrix ultrafiltration membrane for the recovery of Maillard reaction products. Membr. Water. Treat. 2018, 9, 105–113.
Jiang, S. K.; Zhang, G. M.; Yan, L.; Wu, Y. Treatment of natural rubber wastewater by membrane technologies for water reuse. Membr. Water. Treat. 2018, 9, 17–21.
Sarihan, A.; Eren, E. Novel high performanced and fouling resistant PSf/ZnO membranes for water treatment. Membr. Water. Treat. 2017, 8, 563–574.
Valavala, R.; Sohn, J.; Han, J.; Her, N.; Yoon, Y. Pretreatment in reverse osmosis seawater desalination: A short review. Environ. Eng. Res. 2011, 16, 205–212.
Werber, J. R.; Osuji, C. O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018
Chu, K. H.; Huang, Y.; Yu, M.; Heo, J.; Flora, J. R. V.; Jang, A.; Jang, M.; Jung, C.; Park, C. M.; Kim, D. H. et al. Evaluation of graphene oxide-coated ultrafiltration membranes for humic acid removal at different pH and conductivity conditions. Sep. Purif. Technol. 2017, 181, 139–147.
Fathizadeh, M.; Xu, W. L.; Zhou, F. L.; Yoon, Y.; Yu, M. Graphene oxide: A novel 2-dimensional material in membrane separation for water purification. Adv. Mater. Interfaces2017, 4, 1600918.
Gholami, F.; Zinadini, S.; Zinatizadeh, A. A.; Abbasi, A. R. TMU-5 metal-organic frameworks (MOFs) as a novel nanofiller for flux increment and fouling mitigation in PES ultrafiltration membrane. Sep. Purif. Technol. 2018, 194, 272–280.
Ma, J.; Guo, X. Y.; Ying, Y. P.; Liu, D. H.; Zhong, C. L. Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chem. Eng. J. 2017, 313, 890–898.
Sun, H. Z.; Tang, B. B.; Wu, P. Y. Development of hybrid ultrafiltration membranes with improved water separation properties using modified superhydrophilic metal-organic framework nanoparticles. ACS Appl. Mater. Interfaces2017, 9, 21473–21484.
Gadwal, I.; Sheng, G.; Thankamony, R. L.; Liu, Y.; Li, H. F.; Lai, Z. P. Synthesis of sub-10 nm two-dimensional covalent organic thin film with sharp molecular sieving nanofiltration. ACS Appl. Mater. Interfaces2018, 10, 12295–12299.
Li, G.; Zhang, K.; Tsuru, T. Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets. ACS Appl. Mater. Interfaces2017, 9, 8433–8436.
Mo, Y. H.; Zhao, X.; Shen, Y. X. Cation-dependent structural instability of graphene oxide membranes and its effect on membrane separation performance. Desalination2016, 399, 40–46.
Pandey, R. P.; Rasool, K.; Madhavan, V. E.; Aïssa, B.; Gogotsi, Y.; Mahmoud, K. A. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A2018, 6, 3522–3533.
Tang, L.; Livi, K. J. T.; Chen, K. L. Polysulfone membranes modified with bioinspired polydopamine and silver nanoparticles formed in situ to mitigate biofouling. Environ. Sci. Technol. Lett. 2015, 2, 59–65.
Guo, F.; Silverberg, G.; Bowers, S.; Kim, S. P.; Datta, D.; Shenoy, V.; Hurt, R. H. Graphene-based environmental barriers. Environ. Sci. Technol. 2012, 46, 7717–7724.
Huang, Y.; Li, H.; Wang, L.; Qiao, Y. L.; Tang, C. B.; Jung, C.; Yoon, Y.; Li, S. G.; Yu, M. Ultrafiltration membranes with structure-optimized graphene-oxide coatings for antifouling oil/water separation. Adv. Mater. Interfaces2015, 2, 1400433.
Song, J. J.; Huang, Y.; Nam, S. W.; Yu, M.; Heo, J.; Her, N.; Flora, J. R. V.; Yoon, Y. Ultrathin graphene oxide membranes for the removal of humic acid. Sep. Purif. Technol. 2015, 144, 162–167.
Kang, K. M.; Kim, D. W.; Ren, C. E.; Cho, K. M.; Kim, S. J.; Choi, J. H.; Nam, Y. T.; Gogotsi, Y.; Jung, H. T. Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: Comparison with graphene oxide and MXenes. ACS Appl. Mater. Interfaces2017, 9, 44687–44694.
Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photoch. Photobio. C Photochem. Rev. 2012, 13, 169–189.
Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J. M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157.
Li, J. X.; Wang, S.; Du, Y. L.; Liao, W. H. Enhanced photocatalytic performance of TiO2@C nanosheets derived from two-dimensional Ti2CTx. Ceram. Int. 2018, 44, 7042–7046.
Baek, M. H.; Jung, W. C.; Yoon, J. W.; Hong, J. S.; Lee, Y. S.; Suh, J. K. Preparation, characterization and photocatalytic activity evaluation of micro- and mesoporous TiO2/spherical activated carbon. J. Ind. Eng. Chem. 2013, 19, 469–477.
Ullah, K.; Meng, Z. D.; Ye, S.; Zhu, L.; Oh, W. C. Synthesis and characterization of novel PbS-graphene/TiO2 composite with enhanced photocatalytic activity. J. Ind. Eng. Chem. 2014, 20, 1035–1042.
Lu, Y.; Yao, M. H.; Zhou, A. G.; Hu, Q. K.; Wang, L. B. Preparation and photocatalytic performance of Ti3C2/TiO2/CuO ternary nanocomposites. J. Nanomater. 2017, 2017, 1978764.
Perreault, F.; de Faria, A. F.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015, 44, 5861–5896.
Park, S.; Yeon, K. M.; Moon, S.; Kim, J. O. Enhancement of operating flux in a membrane bio-reactor coupled with a mechanical sieve unit. Chemosphere2018, 191, 573–579.
Krishnamoorthy, K.; Veerapandian, M.; Zhang, L. H.; Yun, K.; Kim, S. J. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J. Phys. Chem. C2012, 116, 17280–17287.
Cui, Y. Q.; Zhang, Z. X.; Li, B.; Guo, R. N.; Zhang, X. Y.; Cheng, X. W.; Xie, M. Z.; Cheng, Q. F. Ultrasound assisted fabrication of AgBr/TiO2 nano-tube arrays photoelectrode and its enhanced visible photocatalytic performance and mechanism for detoxification of 4-chlorphenol. Sep. Purif. Technol. 2018, 197, 189–196.
Koseoglu-Imer, D. Y.; Kose, B.; Altinbas, M.; Koyuncu, I. The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): Physical properties, filtration performances, and biofouling resistances of membranes. J. Membr. Sci. 2013, 428, 620–628.
Rasool, K.; Mahmoud, K. A.; Johnson, D. J.; Helal, M.; Berdiyorov, G. R.; Gogotsi, Y. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 2017, 7, 1598.
Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano2016, 10, 3674–3684.
Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. Graphene-based antibacterial paper. ACS Nano2010, 4, 4317–4323.
Fu, F. Y.; Li, L. Y.; Liu, L. J.; Cai, J.; Zhang, Y. P.; Zhou, J. P.; Zhang, L. N. Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Appl. Mater. Interfaces2015, 7, 2597–2606.
Büttner, K.; Bernhardt, J.; Scharf, C.; Schmid, R.; Mäder, U.; Eymann, C.; Antelmann, H.; Völker, A.; Völker, U.; Hecker, M. A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis2001, 22, 2908–2935.
Dong, S. N.; Sun, Y. Y.; Wu, J. C.; Wu, B. J.; Creamer, A. E.; Gao, B. Graphene oxide as filter media to remove levofloxacin and lead from aqueous solution. Chemosphere2016, 150, 759–764.
Wang, J.; Chen, B. L. Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem. Eng. J. 2015, 281, 379–388.
Yang, X.; Chen, C. L.; Li, J. X.; Zhao, G. X.; Ren, X. M.; Wang, X. K. Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv. 2012, 2, 8821–8826.
Jiang, L. H.; Liu, Y. G.; Zeng, G. M.; Xiao, F. Y.; Hu, X. J.; Hu, X.; Wang, H.; Li, T. T.; Zhou, L.; Tan, X. F. Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chem. Eng. J. 2016, 284, 93–102.
Liu, F. F.; Zhao, J.; Wang, S. G.; Xing, B. S. Adsorption of sulfonamides on reduced graphene oxides as affected by pH and dissolved organic matter. Environ. Pollut. 2016, 210, 85–93.
Lin, Y. X.; Xu, S.; Li, J. Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles. Chem. Eng. J. 2013, 225, 679–685.
Liu, F.; Wu, Z. L.; Wang, D. X.; Yu, J. G.; Jiang, X. Y.; Chen, X. Q. Magnetic porous silica-graphene oxide hybrid composite as a potential adsorbent for aqueous removal of p-nitrophenol. Colloids Surf. A Physicochem. Eng. Asp. 2016, 490, 207–214.
She, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy. Lett. 2016, 1, 589–594.
Ma, T. Y.; Cao, J. L.; Jaroniec, M.; Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. , Int. Ed. 2016, 55, 1138–1142.
Li, H. Y.; Hou, Y.; Wang, F. X.; Lohe, M. R.; Zhuang, X. D.; Niu, L.; Feng, X. L. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 2017, 7, 1601847.
Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA. 2014, 111, 16676–16681.
Wang, L. B.; Zhang, H.; Wang, B.; Shen, C. J.; Zhang, C. X.; Hu, Q. K.; Zhou, A. G.; Liu, B. Z. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett. 2016, 12, 702–710.
Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M. Q.; Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y. et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118–3127.
Come, J.; Naguib, M.; Rozier, P.; Barsoum, M. W.; Gogotsi, Y.; Taberna, P. L.; Morcrette, M.; Simon, P. A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. J. Electrochem. Soc. 2012, 159, A1368-A1373.
Dall'Agnese, Y.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J. Phys. Chem. Lett. 2015, 6, 2305–2309.
Wang, X. F.; Kajiyama, S.; Iinuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 2015, 6, 6544.
Xie, Y.; Dall'Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L.; Kent, P. R. C. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano2014, 8, 9606–9615.
Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. , Int. Ed. 2015, 54, 3907–3911.
Boota, M.; Anasori, B.; Voigt, C.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 2016, 28, 1517–1522.
Kajiyama, S.; Szabova, L.; Sodeyama, K.; Iinuma, H.; Morita, R.; Gotoh, K.; Tateyama, Y.; Okubo, M.; Yamada A. Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano2016, 10, 3334–3341.
Jiang, Q.; Wu, C. S.; Wang, Z. J.; Wang, A. C.; He, J. H.; Wang, Z. L.; Alshareef, H. N. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy2018, 45, 266–272.
Ma, Z. Y.; Zhou, X. F.; Deng, W.; Lei, D.; Liu, Z. P. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces2018, 10, 3634–3643.
Pourali, Z.; Sovizi, M. R.; Yaftian, M. R. Two-dimensional Ti3C2Tx/CMK-5 nanocomposite as high performance anodes for lithium batteries. J. Alloys Compd. 2018, 738, 130–137.
Wang, J. J.; Dong, S. Y.; Li, H. S.; Chen, Z. J.; Jiang, S. B.; Wu, L. Y.; Zhang, X. G. Facile synthesis of layered Li4Ti5O12-Ti3C2Tx (MXene) composite for high-performance lithium ion battery. J. Electroanal. Chem. 2018, 810, 27–33.
Wu, Y. T.; Nie, P.; Wu, L. Y.; Dou, H.; Zhang, X. G. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chem. Eng. J. 2018, 334, 932–938.
Yu, P.; Cao, G. J.; Yi, S.; Zhang, X.; Li, C.; Sun, X. Z.; Wang, K.; Ma, Y. W. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale2018, 10, 5906–5913.
Zhang, C. F.; Kremer, M. P.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 2018, 28, 1705506.
Zhang, Y. Q.; Guo, B. S.; Hu, L. Y.; Xu, Q. J.; Li, Y.; Liu, D. Y.; Xu, M. W. Synthesis of SnS nanoparticle-modified MXene (Ti3C2Tx) composites for enhanced sodium storage. J. Alloys Compd. 2018, 732, 448–453.