AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible and reusable cap-like thin Fe2O3 film for SERS applications

Jiangtao Xu1Xiaoting Li1Yuxiang Wang1Ronghui Guo2Songmin Shang1( )Shouxiang Jiang1( )
Institute of Textiles and Clothing,The Hong Kong Polytechnic University,Hong Kong,999077,Hong Kong, China;
College of Light Industry,Textile and Food Engineering, Sichuan University,Chengdu,610000,China;
Show Author Information

Graphical Abstract

Abstract

Cap-like α-Fe2O3 films are fabricated and deposited onto quartz fabric by using radio frequency magnetron sputtering and annealing. The treated fabric sample in this study shows highly sensitive surface-enhanced Raman scattering (SERS) and excellent flexibility, reproducibility and stability. In addition, the sample can be recovered after a washing process with an organic solvent and repeatedly used. The sensitive SERS performance is attributed to chemical enhancement through a charge transfer process. Moreover, the SERS performance is also found to be dependent on the light coupling effect. When the light absorbance rate of the α-Fe2O3 films increases at a wavelength near that of laser light, the film shows excellent sensitivity due to light coupling effect.

Electronic Supplementary Material

Download File(s)
12274_2018_2227_MOESM1_ESM.pdf (4.7 MB)

References

1

Courtecuisse, S.; Cansell, F.; Fabre, D.; Petitet, J. P. Comparative Raman spectroscopy of nitromethane-h3, nitromethane-d3, and nitroethane up to 20 GPa. J. Chem. Phys. 1998, 108, 7350-7355.

2

Miao, D. G.; Xu, J. T.; Jiang, S. X.; Ning, X.; Liu, J.; Shang, S. M. Crystallization temperature investigation of Cu2ZnSnS4 by using differential scanning calorimetry (DSC). Ceram. Int. 2018, 44, 4256-4261.

3

Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102-1106.

4

Wang, X. T.; Shi, W. S.; She, G. W.; Mu, L. X. Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures. Phys. Chem. Chem. Phys. 2012, 14, 5891-5901.

5

Fan, W.; Lee, Y. H.; Pedireddy, S.; Zhang, Q.; Liu, T. X.; Ling, X. Y. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale 2014, 6, 4843-4851.

6

Huang, S. X.; Ling, X.; Liang, L. B.; Song, Y.; Fang, W. J.; Zhang, J.; Kong, J.; Meunier, V.; Dresselhaus, M. S. S. Molecular selectivity of graphene-enhanced Raman scattering. Nano Lett. 2015, 15, 2892-2901.

7

Huang, J. A.; Zhao, Y. Q.; Zhang, X. J.; He, L. F.; Wong, T. L.; Chui, Y. S.; Zhang, W. J.; Lee, S. T. Ordered Ag/Si nanowires array: Wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection. Nano Lett. 2013, 13, 5039-5045.

8

Luo, H. R.; Wang, X. H.; Huang, Y. Q.; Lai, K. Q.; Rasco, B. A.; Fan, Y. X. Rapid and sensitive surface-enhanced Raman spectroscopy (SERS) method combined with gold nanoparticles for determination of paraquat in apple juice. J. Sci. Food. Agric. 2018, 98, 3892-3898.

9

He, L. L.; Liu, C. Q.; Tang, J.; Zhou, Y. C.; Yang, H.; Liu, R. Y.; Hu, J. G. Self-catalytic stabilized Ag-Cu nanoparticles with tailored SERS response for plasmonic photocatalysis. Appl. Surf. Sci. 2018, 434, 265-272.

10

Li, J.; Zhang, W. N.; Lei, H. X.; Li, B. J. Ag nanowire/nanoparticle-decorated MoS2 monolayers for surface-enhanced Raman scattering applications. Nano Res. 2018, 11, 2181-2189.

11

Stamplecoskie, K. G.; Scaiano, J. C.; Tiwari, V. S.; Anis, H. Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2011, 115, 1403-1409.

12

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.

13

Cong, S.; Yuan, Y. Y.; Chen, Z. G.; Hou, J. Y.; Yang, M.; Su, Y. L.; Zhang, Y. Y.; Li, L.; Li, Q. W.; Geng, F. X. et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun. 2015, 6, 7800.

14

Wu, H.; Wang, H.; Li, G. H. Metal oxide semiconductor SERS-active substrates by defect engineering. Analyst 2017, 142, 326-335.

15

Lin, J.; Hao, W.; Shang, Y.; Wang, X. T.; Qiu, D. L.; Ma, G. S.; Chen, C.; Li, S. Z.; Guo, L. Direct experimental observation of facet-dependent SERS of Cu2O polyhedra. Small 2018, 14, 1703274.

16

Yang, L. L.; Yang, Y.; Ma, Y. F.; Li, S.; Wei, Y. Q.; Huang, Z. R.; Long, N. V. Fabrication of semiconductor ZnO nanostructures for versatile SERS application. Nanomaterials 2017, 7, 398.

17

Yan, X. F.; Xu, Y.; Tian, B. Z.; Lei, J. Y.; Zhang, J. L.; Wang, L. Z. Operando SERS self-monitoring photocatalytic oxidation of aminophenol on TiO2 semiconductor. Appl Catal. B-Environ. 2018, 224, 305-309.

18

Ji, W.; Zhao, B.; Ozaki, Y. Semiconductor materials in analytical applications of surface-enhanced Raman scattering. J. Raman Spectrosc. 2016, 47, 51-58.

19

Qi, D. Y.; Lu, L. J.; Wang, L. Z.; Zhang, J. L. Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling. J. Am. Chem. Soc. 2014, 136, 9886-9889.

20

Jiang, L.; Yin, P. G.; You, T. T.; Wang, H.; Lang, X. F.; Guo, L.; Yang, S. H. Highly reproducible surface-enhanced Raman spectra on semiconductor SnO2 octahedral nanoparticles. ChemPhysChem 2012, 13, 3932-3936.

21

Zhang, B.; Liu, G. N.; Cheng, M.; Gao, Y.; Zhao, L. J.; Li, S.; Liu, F. M.; Yan, X.; Zhang, T.; Sun, P. et al. The preparation of reduced graphene oxide-encapsulated α-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature. Sensor. Actuat. B-Chem. 2018, 261, 252-263.

22

Li, M.; Zhou, S. Q. α-Fe2O3/polyaniline nanocomposites as an effective catalyst for improving the electrochemical performance of microbial fuel cell. Chem. Eng. J. 2018, 339, 539-546.

23

Formoso, P.; Muzzalupo, R.; Tavano, L.; De Filpo, G.; Nicoletta, F. P. Nanotechnology for the environment and medicine. Mini-Rev. Med. Chem. 2016, 16, 668-675.

24

Fu, X. Q.; Bei, F. L.; Wang, X.; Yang, X. J.; Lu, L. D. Surface-enhanced Raman scattering of 4-mercaptopyridine on sub-monolayers of α-Fe2O3 nanocrystals (sphere, spindle, cube). J. Raman Spectrosc. 2009, 40, 1290-1295.

25

Bao, F.; Yao, J. L.; Gu, R. A. Synthesis of magnetic Fe2O3/Au Core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced Raman spectroscopy. Langmuir 2009, 25, 10782-10787.

26

Bian, L. L.; Liu, Y. J.; Zhu, G. X.; Yan, C.; Zhang, J. H.; Yuan, A. H. Ag@CoFe2O4/Fe2O3 nanorod arrays on carbon fiber cloth as SERS substrate and photo-Fenton catalyst for detection and degradation of R6G. Ceram. Int. 2018, 44, 7580-7587.

27

Xiong, W.; Zhao, Q. D.; Li, X. Y.; Wang, L. Z. Multifunctional plasmonic Co-doped Fe2O3@polydopamine-Au for adsorption, photocatalysis, and SERS-based sensing. Part. Part. Syst. Char. 2016, 33, 602-609.

28

Li, M. W.; Qiu, Y. Y.; Fan, C. C.; Cui, K.; Zhang, Y. M.; Xiao, Z. Y. Design of SERS nanoprobes for Raman imaging: Materials, critical factors and architectures. Acta Pharm. Sin. B 2018, 8, 381-389.

29

Kumar, S.; Goel, P.; Singh, J. P. Flexible and robust SERS active substrates for conformal rapid detection of pesticide residues from fruits. Sensor. Actuat. B-Chem. 2017, 241, 577-583.

30

Chen, N.; Ding, P.; Shi, Y.; Jin, T. Y.; Su, Y. Y.; Wang, H. Y.; He, Y. Portable and reliable surface-enhanced Raman scattering silicon chip for signal-on detection of trace trinitrotoluene explosive in real systems. Anal. Chem. 2017, 89, 5072-5078.

31

Liyanage, T.; Rael, A.; Shaffer, S.; Zaidi, S.; Goodpaster, J. V.; Sardar, R. Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints. Analyst 2018, 143, 2012-2022.

32

Lin, Y.; Bunker, C. E.; Fernando, K. A. S.; Connell, J. W. Aqueously dispersed silver nanoparticle-decorated boron nitride nanosheets for reusable, thermal oxidation-resistant surface enhanced Raman spectroscopy (SERS) devices. ACS Appl. Mater. Interfaces 2012, 4, 1110-1117.

33

Liu, J. W.; Wang, J. L.; Huang, W. R.; Yu, L.; Ren, X. F.; Wen, W. C.; Yu, S. H. Ordering Ag nanowire arrays by a glass capillary: A portable, reusable and durable SERS substrate. Sci. Rep. 2012, 2, 987.

34

Li, D.; Li, D. W.; Li, Y.; Fossey, J. S.; Long, Y. T. Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering. J. Mater. Chem. 2010, 20, 3688-3693.

35

Lv, B. L.; Xu, Y.; Tian, H.; Wu, D.; Sun, Y. H. Synthesis of Fe3O4\SiO2\Ag nanoparticles and its application in surface-enhanced Raman scattering. J. Solid State Chem. 2010, 183, 2968-2973.

36

Li, X. H.; Chen, G. Y.; Yang, L. B.; Jin, Z.; Liu, J. H. Multifunctional Aucoated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater. 2010, 20, 2815-2824.

37

Chen, J. M.; Huang, Y. J.; Kannan, P.; Zhang, L.; Lin, Z. Y.; Zhang, J. W.; Chen, T.; Guo, L. H. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal. Chem. 2016, 88, 2149-2155.

38

Gong, Z. J.; Du, H. J.; Cheng, F. S.; Wang, C.; Wang, C. C.; Fan, M. K. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl. Mater. Interfaces 2014, 6, 21931-21937.

39

Yu, W. W.; White, I. M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 2013, 138, 1020-1025.

40

Miao, D. G.; Jiang, S. X.; Shang, S. M.; Chen, Z. M. Effect of heat treatment on infrared reflection property of Al-doped ZnO films. Sol. Energ. Mat. Sol. C 2014, 127, 163-168.

41

Miao, D. G.; Hu, H. W.; Gan, L. Fabrication of high infrared reflective Al-doped ZnO thin films through electropulsing treatment for solar control. J. Alloys Compd. 2015, 639, 400-405.

42

Nasibulin, A. G.; Rackauskas, S.; Jiang, H.; Tian, Y.; Mudimela, P. R.; Shandakov, S. D.; Nasibulina, L. I.; Jani, S.; Kauppinen, E. I. Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2009, 2, 373-379.

43

Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441-2449.

44

Jiang, S. X.; Xu, J. T.; Miao, D. G.; Peng, L. H.; Shang, S. M.; Zhu, P. Water-repellency, ultraviolet protection and infrared emissivity properties of AZO film on polyester fabric. Ceram. Int. 2017, 43, 2424-2430.

45

Jiang, S. X.; Peng, L. H.; Guo, R. H.; Miao, D. G.; Shang, S. M.; Xu, J. T.; Li, A. S. Preparation and characterization of Fe2O3 coating on quartz fabric by electron beam evaporation. Ceram. Int. 2016, 42, 19386-19392.

46

Yang, J. J.; Chen, D. M.; Zhu, Y.; Zhang, Y. M.; Zhu, Y. F. 3D-3D porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation. Appl. Catal. B-Environ. 2017, 205, 228-237.

47

Shang, Y. Y.; Chen, X.; Liu, W. W.; Tan, P. F.; Chen, H. Y.; Wu, L. D.; Ma, C.; Xiong, X.; Pan, J. Photocorrosion inhibition and high-efficiency photoactivity of porous g-C3N4/Ag2CrO4 composites by simple microemulsion-assisted co-precipitation method. Appl. Catal. B-Environ. 2017, 204, 78-88.

48

Su, S.; Zhang, C.; Yuwen, L. H.; Chao, J.; Zuo, X. L.; Liu, X. F.; Song, C. Y.; Fan, C. H.; Wang, L. H. Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 18735-18741.

49

He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: Electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 2009, 3, 3993-4002.

50

Wei, H.; Hao, F.; Huang, Y. Z.; Wang, W. Z.; Nordlander, P.; Xu, H. X. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett. 2008, 8, 2497-2502.

51

El Qada, E. N.; Allen, S. J.; Walker, G. M. Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chem. Eng. J. 2006, 124, 103-110.

52

Wu, K. Y.; Li, T.; Schmidt, M. S.; Rindzevicius, T.; Boisen, A.; Ndoni, S.; Gold nanoparticles sliding on recyclable nanohoodoos-engineered for surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 2018, 28, 1704818.

53

Ling, X.; Moura, L. G.; Pimenta, M. A.; Zhang, J. Charge-transfer mechanism in graphene-enhanced Raman scattering. J. Phys. Chem. C 2012, 116, 25112-25118.

Nano Research
Pages 381-388
Cite this article:
Xu J, Li X, Wang Y, et al. Flexible and reusable cap-like thin Fe2O3 film for SERS applications. Nano Research, 2019, 12(2): 381-388. https://doi.org/10.1007/s12274-018-2227-1
Topics:

826

Views

43

Crossref

N/A

Web of Science

43

Scopus

4

CSCD

Altmetrics

Received: 09 July 2018
Revised: 14 October 2018
Accepted: 16 October 2018
Published: 08 November 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return