AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A laterally sensitive colloidal probe for accurately measuring nanoscale adhesion of textured surfaces

Sören Zimmermann1,2( )Waldemar Klauser1James Mead2Shiliang Wang2,3Han Huang2Sergej Fatikow1
Department of Computing Science,University of Oldenburg,Oldenburg ,D-26129,Germany;
School of Mechanical and Mining Engineering,The University of Queensland,Brisbane,4072,Australia;
School of Physics and Electronics,Central South University,Changsha,410083,China;
Show Author Information

Graphical Abstract

Abstract

Adhesion assessment of nanoscale contacts is a critical capability for the development of future nanoelectromechanical systems and nanobiotechnology devices. However, experimental approaches to investigate interactions on micro- and nanostructured surfaces have predominantly been restricted to capturing adhesion force in the normal direction. This provides limited information about the multidimensional nature of surface texture and related interaction mechanisms. Here the design, fabrication, and application of a unique atomic force microscope probe is presented that consists of a focused ion beam-milled cantilever decorated with a colloidal particle. The probe is specifically developed for characterizing textured surfaces with lateral force feedback. Pull-off tests that map the adhesive interaction in microscale cavities are performed to examine the capability of the probe. Normal and lateral adhesive forces during nanoscale contact are accurately obtained and the adhesion energy of the contact interface is thus determined. An in-depth understanding of the effects of surface texture and the correlation of adhesion and friction is demonstrated. The proposed methodology enables dedicated investigations of interfacial interaction on various non-planar surfaces. It can be used for understanding the complex interplay of adhesion, contact, and friction forces at nanoscale, which may facilitate significant advances in challenging research areas such as fibrillar adhesion.

Electronic Supplementary Material

Download File(s)
12274_2018_2228_MOESM1_ESM.pdf (1.1 MB)

References

1

Potthoff, E.; Franco, D.; D'Alessandro, V.; Starck, C.; Falk, V.; Zambelli, T.; Vorholt, J. A.; Poulikakos, D.; Ferrari, A. Toward a rational design of surface textures promoting endothelialization. Nano Lett. 2014, 14, 1069–1079.

2

Linklater, D. P.; Nguyen, H. K. D.; Bhadra, C. M.; Juodkazis, S.; Ivanova, E. P. Influence of nanoscale topology on bactericidal efficiency of black silicon surfaces. Nanotechnology 2017, 28, 245301.

3

Komvopoulos, K. Adhesion and friction forces in microelectromechanical systems: Mechanisms, measurement, surface modification techniques, and adhesion theory. J. Adhes. Sci. Technol. 2003, 17, 477–517.

4

Zimmermann, S.; Specht, U.; Spieß, L.; Romanus, H.; Krischok, S.; Himmerlich, M.; Ihde, J. Improved adhesion at titanium surfaces via laser-induced surface oxidation and roughening. Mater. Sci. Eng. A 2012, 558, 755–760.

5

Simpson, J. T.; Scott, R. H.; Aytug, T. Superhydrophobic materials and coatings: A review. Rep. Prog. Phys. 2015, 78, 086501.

6

Kim, T.; Park, J.; Sohn, J.; Cho, D.; Jeon, S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D–2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 2016, 10, 4770–4778.

7

Morikawa, K.; Tsukahara, T. Fabrication of hydrophobic nanostructured surfaces for microfluidic control. Anal. Sci. 2016, 32, 79–83.

8

Figueiredo, L. J. Application of nanocarbon materials to catalysis. In Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection; van de Voorde, M.; Sels, B.; Eds., Wiley-Blackwell: Weinheim, 2017; pp 37–56.

9

Drelich, J.; Mittal, K. L. Atomic Force Microscopy in Adhesion Studies; VSP: Leiden, Boston, 2005.

10

Cappella, B.; Dietler, G. Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 1999, 34, 1–3, 5–104.

11

Ralston, J.; Larson, I.; Rutland, M. W.; Feiler, A. A.; Kleijn, M. Atomic force microscopy and direct surface force measurements. Pure Appl. Chem. 2005, 77, 2149–2170.

12

Butt, H. J. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J. 1991, 60, 1438–1444.

13

Ducker, W. A.; Senden, T. J.; Pashley, R. M. Direct measurement of colloidal forces using an atomic force microscope. Nature 1991, 353, 239–241.

14

Kappl, M.; Butt, H. J. The colloidal probe technique and its application to adhesion force measurements. Part. Syst. Charact. 2002, 19, 129–143.

15

Jiang, T.; Zhu, Y. Measuring graphene adhesion using atomic force microscopy with a microsphere tip. Nanoscale 2015, 7, 10760–10766.

16

Liu, D. L.; Martin, J.; Burnham, N. A. Which fractal parameter contributes most to adhesion? J. Adhes. Sci. Technol. 2010, 24, 2383–2396.

17

Kim, J. H.; Yuk, Y.; Joo, H. S.; Cheon, J. Y.; Choi, H. S.; Joo, S. H.; Park, J. Y. Nanoscale adhesion between Pt nanoparticles and carbon support and its influence on the durability of fuel cells. Curr. Appl. Phys. 2015, 15, S108-S114.

18

Yang, S.; Zhang, H.; Nosonovsky, M.; Chung, K. H. Effects of contact geometry on pull-off force measurements with a colloidal probe. Langmuir 2008, 24, 743–748.

19

Ramakrishna, S. N.; Clasohm, L. Y.; Rao, A.; Spencer, N. D. Controlling adhesion force by means of nanoscale surface roughness. Langmuir 2011, 27, 9972–9978.

20

Laitinen, O.; Bauer, K.; Niinimäki, J.; Peuker, U. A. Validity of the Rumpf and the Rabinovich adhesion force models for alumina substrates with nanoscale roughness. Powder Technol. 2013, 246, 545–552.

21

Yang, S.; Zhang, H.; Hsu, S. M. Correction of random surface roughness on colloidal probes in measuring adhesion. Langmuir 2007, 23, 1195–1202.

22

Chai, Z. M.; Liu, Y. H.; Lu, X. C.; He, D. N. Reducing adhesion force by means of atomic layer deposition of ZnO films with nanoscale surface roughness. ACS Appl. Mater. Interfaces 2014, 6, 3325–3330.

23

Rumpf, H. Particle Technology; Chapman and Hall: London, 1990.

24

Rabinovich, Y. I.; Adler, J. J.; Ata, A.; Singh, R. K.; Moudgil, B. M. Adhesion between nanoscale rough surfaces: I. Role of asperity geometry. J. Colloid Interface Sci. 2000, 232, 10–16.

25

Rabinovich, Y. I.; Adler, J. J.; Ata, A.; Singh, R. K.; Moudgil, B. M. Adhesion between nanoscale rough surfaces: Ⅱ. Measurement and comparison with theory. J. Colloid Interface Sci. 2000, 232, 17–24.

26

LaMarche, C. Q.; Leadley, S.; Liu, P. Y.; Kellogg, K. M.; Hrenya, C. M. Method of quantifying surface roughness for accurate adhesive force predictions. Chem. Eng. Sci. 2017, 158, 140–153.

27

Cooper, K.; Ohler, N.; Gupta, A.; Beaudoin, S. Analysis of contact interactions between a rough deformable colloid and a smooth substrate. J. Colloid Interface Sci. 2000, 222, 63–74.

28

Jacobs, T. D. B.; Ryan, K. E.; Keating, P. L.; Grierson, D. S.; Lefever, J. A.; Turner, K. T.; Harrison, J. A.; Carpick, R. W. The effect of atomic-scale roughness on the adhesion of nanoscale asperities: A combined simulation and experimental investigation. Tribol. Lett. 2013, 50, 81–93.

29

Le Goïc, G.; Bigerelle, M.; Samper, S.; Favrelière, H.; Pillet, M. Multiscale roughness analysis of engineering surfaces: A comparison of methods for the investigation of functional correlations. Mech. Syst. Signal Process. 2016, 66–67, 437–457.

30

Tormoen, G. W.; Drelich, J. Deformation of soft colloidal probes during AFM pull-off force measurements: Elimination of nano-roughness effects. J. Adhes. Sci. Technol. 2005, 19, 181–198.

31

Escobar, J. V.; Garza, C.; Castillo, R. Measuring adhesion on rough surfaces using atomic force microscopy with a liquid probe. Beilstein J. Nanotechnol. 2017, 8, 813–825.

32

Chung, K. H.; Pratt, J. R.; Reitsma, M. G. Lateral force calibration: Accurate procedures for colloidal probe friction measurements in atomic force microscopy. Langmuir 2010, 26, 1386–1394.

33

Cannara, R. J.; Eglin, M.; Carpick, R. W. Lateral force calibration in atomic force microscopy: A new lateral force calibration method and general guidelines for optimization. Rev. Sci. Instrum. 2006, 77, 53701.

34

Sader, J. E.; Green, C. P. In-plane deformation of cantilever plates with applications to lateral force microscopy. Rev. Sci. Instrum. 2004, 75, 878–883.

35

Meyer, G.; Amer, N. M. Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl. Phys. Lett. 1990, 57, 2089–2091.

36

Schmutz, J. E.; Schäfer, M. M.; Hölscher, H. Colloid probes with increased tip height for higher sensitivity in friction force microscopy and less cantilever damping in dynamic force microscopy. Rev. Sci. Instrum. 2008, 79, 026103.

37

Zimmermann, S.; Tiemerding, T.; Fatikow, S. Automated robotic manipulation of individual colloidal particles using vision-based control. IEEE/ASME Trans. Mechatron. 2015, 20, 2031–2038.

38

Vogt, J.; Zimmermann, S.; Huck, C.; Tzschoppe, M.; Neubrech, F.; Fatikow, S.; Pucci, A. Chemical identification of individual fine dust particles with resonant plasmonic enhancement of nanoslits in the infrared. ACS Photonics 2017, 4, 560–566.

39

Zimmermann, S.; Tiemerding, T.; Haenssler, O. C.; Fatikow, S. Automated robotic manipulation of individual sub-micro particles using a dual probe setup inside the scanning electron microscope. In Proceeding of 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA, 2015, pp 950–955.

40

Hutter, J. L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868–1873.

41

Johnson, K. L.; Kendall, K.; Roberts, A. D. Surface energy and the contact of elastic solids. Proc. Roy. Soc. A: Math. Phys. Sci. 1971, 324, 301–313.

42

Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 1975, 53, 314–326.

43

Carpick, R. W.; Ogletree, D. F.; Salmeron, M. A general equation for fitting contact area and friction vs. load measurements. J. Colloid Interface Sci. 1999, 211, 395–400.

44

Grierson, D. S.; Flater, E. E.; Carpick, R. W. Accounting for the JKR–DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhes. Sci. Technol. 2005, 19, 291–311.

45

White, L. R. On the deryaguin approximation for the interaction of macrobodies. J. Colloid Interface Sci. 1983, 95, 286–288.

46

Utke, I.; Hoffmann, P.; Melngailis, J. Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 2008, 26, 1197.

47

Heim, L. O.; Blum, J.; Preuss, M.; Butt, H. J. Adhesion and friction forces between spherical micrometer-sized particles. Phys. Rev. Lett. 1999, 83, 3328–3331.

48

Kimura, H.; Wada, K.; Senshu, H.; Kobayashi, H. Cohesion of amorphous silica spheres: Toward a better understanding of the coagulation growth of silicate dust aggregates. Astrophys. J. 2015, 812, 67.

49

Mo, Y. F.; Turner, K. T.; Szlufarska, I. Friction laws at the nanoscale. Nature 2009, 457, 1116–1119.

50

Craciun, A. D.; Gallani, J. L.; Rastei, M. V. Stochastic stick–slip nanoscale friction on oxide surfaces. Nanotechnology 2016, 27, 055402.

51

Gauthier, M.; Chaillet, N.; Régnier, S.; Rougeot, P. Analysis of forces for micromanipulations in dry and liquid media. J. Micromechatron. 2006, 3, 389–413.

52

Klauser, W.; Zimmermann, S.; Bartenwerfer, M.; Fatikow, S. Cubical photonic structures by means of ion beam assisted robotic assembly. In Proceedings of 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Sendai, Japan, 2016, pp 270–274.

53

Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600–1630.

54

Smith, A. M.; Callow, J. A. Biological Adhesives; Springer International Publishing: Cham, 2016.

Nano Research
Pages 389-396
Cite this article:
Zimmermann S, Klauser W, Mead J, et al. A laterally sensitive colloidal probe for accurately measuring nanoscale adhesion of textured surfaces. Nano Research, 2019, 12(2): 389-396. https://doi.org/10.1007/s12274-018-2228-0
Topics:

672

Views

17

Crossref

N/A

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 23 August 2018
Revised: 01 October 2018
Accepted: 16 October 2018
Published: 29 October 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return