AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots

Taeho Noh1Heung Seob Shin2Changwon Seo3Jun Young Kim1Jongwon Youn1Jeongyong Kim3Kwang-Sup Lee2( )Jinsoo Joo1( )
Department of Physics,Korea University,Seoul,02841, Republic of Koreacountry ;
Department of Advanced Materials and Chemical Engineering,Hannam University,Daejeon,34430,Republic of Korea;
Department of Energy Science,Sungkyunkwan University,Suwon,16419,Republic of Korea;
Show Author Information

Graphical Abstract

Abstract

Inorganic perovskite CsPbBr3 quantum dots (QDs) are potential nanoscale photosensitizers; moreover, two-dimensional (2-D) molybdenum disulfide (MoS2) has been intensively studied for application in the active layers of optoelectronic devices. In this study, heterostructures of 2D-monolayered MoS2 with zero-dimensional functionalized CsPbBr3 QDs were prepared, and their nanoscale optical characteristics were investigated. The effect of n-type doping on the MoS2 monolayer after hybridization with perovskite CsPbBr3 QDs was observed using laser confocal microscope photoluminescence (PL) and Raman spectra. Field-effect transistors (FETs) using MoS2 and the MoS2–CsPbBr3 QDs hybrid were also fabricated, and their electrical and photoresponsive characteristics were investigated in terms of the charge transfer effect. For the MoS2–CsPbBr3 QDs-based FETs, the field effect mobility and photoresponsivity upon light irradiation were enhanced by ~ 4 times and a dramatic ~ 17 times, respectively, compared to the FET prepared without the perovskite QDs and without light irradiation. It is noteworthy that the photoresponsivity of the MoS2–CsPbBr3 QDs-based FETs significantly increased with increasing light power, which is completely contrary to the behavior observed in previous studies of MoS2-based FETs. The increased mobility and significant enhancement of the photoresponsivity can be attributed to the n-type doping effect and efficient energy transfer from CsPbBr3 QDs to MoS2. The results indicate that the optoelectronic characteristics of MoS2-based FETs can be significantly improved through hybridization with photosensitive perovskite CsPbBr3 QDs.

Electronic Supplementary Material

Download File(s)
12274_2018_2230_MOESM1_ESM.pdf (1.4 MB)

References

1

Novoselov, K. S.; Morozov, S. V.; Mohinddin, T. M. G.; Ponomarenko, L. A.; Elias, D. C.; Yang, R.; Barbolina, I. I.; Blake, P.; Booth, T. J.; Jiang, D. et al. Electronic properties of graphene. Phys. Status Solidi B 2007, 244, 4106–4111.

2

Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876.

3

Tong, X.; Ashalley, E.; Lin, F.; Li, H. D.; Wang, Z. M. Advances in MoS2-based field effect transistors (FETs). Nano-Micro Lett. 2015, 7, 203–218.

4

Dhakal, K. P.; Duong, D. L.; Lee, J.; Nam, H.; Kim, M.; Kan, M.; Lee, Y. H.; Kim, J. Confocal absorption spectral imaging of MoS2: Optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 2014, 6, 13028–13035.

5

Lui, C. H.; Ye, Z. P.; Ji, C.; Chiu, K. C.; Chou, C. T.; Andersen, T. I.; Means-Shively, C.; Anderson, H.; Wu, J. M.; Kidd, T. et al. Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 2015, 91, 165403.

6

Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

7

Wei, W.; Dai, Y.; Sun, Q. L.; Yin, N.; Han, S. H.; Huang, B. B.; Jacob, T. Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures. Phys. Chem. Chem. Phys. 2015, 17, 29380– 29386.

8

Paul, A. K.; Kuiri, M.; Saha, D.; Chakraborty, B.; Mahapatra, S.; Sood, A. K.; Das, A. Photo-tunable transfer characteristics in MoTe2–MoS2 vertical heterostructure. npj 2D Mater. Appl. 2017, 1, 17.

9

Fivaz R.; Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 1967, 163, 743.

10

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

11

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, I. V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147.

12

Liu, H.; Peide, D. Y. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Elec. Dev. Lett. 2012, 33, 546–548.

13

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

14

Polavarapu, L.; Nickel, B.; Feldmann, J.; Urban, A. S. Advances in quantum-confined perovskite nanocrystals for optoelectronics. Adv. Energy Mater. 2017, 7, 1700267.

15

Huang, C. Y.; Zou, C.; Mao, C. Y.; Corp, K. L.; Yao, Y. C.; Lee, Y. J.; Schlenker, C. W.; Jen, A. K. Y.; Lin, L. Y. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics 2017, 4, 2281–2289.

16

Ha, S. T.; Su, R.; Xing, J.; Zhang, Q.; Xiong, Q. H. Metal halide perovskite nanomaterials: Synthesis and applications. Chem. Sci. 2017, 8, 2522–2536.

17

Du, X. F.; Wu, G.; Cheng, J.; Dang, H.; Ma, K. Z.; Zhang, Y. W.; Tan, P. F.; Chen, S. High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes. RSC Adv. 2017, 7, 10391–10396.

18

Li, H.; Zheng, X.; Liu, Y.; Zhang, Z. P; Jiang, T. Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure. Nanoscale 2018, 10, 1650–1659.

19

Liu, Y.; Li, H.; Zheng, X.; Cheng, X. G.; Jiang, T. Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots. Opt. Mater. Express 2017, 7, 1327–1334.

20

Chen, C. Y.; Qiao, H.; Lin, S. H.; Luk, C. M.; Liu, Y.; Xu, Z. Q.; Song, J. C.; Xue, Y. Z.; Li, D. L.; Yuan, J. et al. Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci. Rep. 2015, 5, 11830.

21

Kang, D. H.; Pae, S. R.; Shim, J.; Yoo, G.; Jeon, J.; Leem, J. W.; Yu, J. S.; Lee, S.; Shin, B.; Park, J. H. An ultrahigh-performance photodetector based on a perovskite–transition-metal-dichalcogenide hybrid structure. Adv. Mater. 2016, 28, 7799–7806.

22

Song, X. F.; Liu, X. H.; Yu, D. J.; Huo, C. X.; Ji, J. P.; Li, X. M.; Zhang, S. L.; Zou, Y. S.; Zhu, G. Y.; Wang, Y. J. et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces 2018, 10, 2801–2809.

23

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

24

Liu, M.; Zhong, G. H.; Yin, Y. M.; Miao, J. S.; Li, K.; Wang, C. Q.; Xu, X. R.; Shen, C.; Meng, H. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci. 2017, 4, 1700335.

25

Guria, A. K.; Dutta, S. K.; Adhikari, S. D.; Pradhan, N. Doping Mn2+ in lead halide perovskite nanocrystals: Successes and challenges. ACS Energy Lett. 2017, 2, 1014–1021.

26

Zhang, W. J.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.

27

Liu, K.; Yan, Q. M.; Chen, M.; Fan, W.; Sun, Y. H.; Suh, J.; Fu, D. Y.; Lee, S.; Zhou, J.; Tongay, S. et al. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 2014, 14, 5097–5103.

28

Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

29

Ryu, M. Y.; Jang, H. K.; Lee, K. J.; Piao, M. X.; Ko, S. P.; Shin, M.; Huh, J.; Kim, G. T. Triethanolamine doped multilayer MoS2 field effect transistors. Phys. Chem. Chem. Phys. 2017, 19, 13133–13139.

30

Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

31

Andleeb, S.; Singh, A. K.; Eom, J. Chemical doping of MoS2 multilayer by p-toluene sulfonic acid. Sci. Technol. Adv. Mater. 2015, 16, 035009.

32

Lin, Z. Y.; Zhao, Y. D.; Zhou, C. J.; Zhong, R.; Wang, X. S.; Tsang, Y. H.; Chai, Y. Controllable growth of large–size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 2015, 5, 18596.

33

Bhanu, U.; Islam, M. R.; Tetard, L.; Khondaker, S. I. Photoluminescence quenching in gold-MoS2 hybrid nanoflakes. Sci. Rep. 2014, 4, 5575.

34

Cho, E. H.; Song, W. G.; Park, C. J.; Kim, J.; Kim, S.; Joo, J. Enhancement of photoresponsive electrical characteristics of multilayer MoS2 transistors using rubrene patches. Nano Res. 2015, 8, 790–800.

35

Yi, Y.; Wu, C. M.; Liu, H. C.; Zeng, J. L.; He, H. T.; Wang, J. N. A study of lateral Schottky contacts in WSe2 and MoS2 field effect transistors using scanning photocurrent microscopy. Nanoscale 2015, 7, 15711–15718.

36

Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. S. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653–8661.

37

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

Nano Research
Pages 405-412
Cite this article:
Noh T, Shin HS, Seo C, et al. Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots. Nano Research, 2019, 12(2): 405-412. https://doi.org/10.1007/s12274-018-2230-6
Topics:

829

Views

37

Crossref

N/A

Web of Science

38

Scopus

0

CSCD

Altmetrics

Received: 11 June 2018
Revised: 11 October 2018
Accepted: 18 October 2018
Published: 09 November 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return