AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection

Qin Wang§Yan Li§Xiaoyan ChenHao JiangZhirong ZhangXun Sun( )
Key Laboratory of Drug Targeting and Drug Delivery Systems,Ministry of Education, West China School of Pharmacy, Sichuan University,Chengdu,610041,China;

§ Qin Wang and Yan Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Current therapeutic limitations existed in effective treatment of rheumatoid arthritis (RA) have motivated numerous researches on finding new strategies. Regarding to the non-targeted distribution and uncontrollable in vivo performance which hinder the effective treatment for RA, we designed an acid-responsive polymeric micelle formulation by attaching the dexamethasone (Dex) to the side chains of a wheat-like polyethylene glycol (PEG) derivate via a hydrazone linker. The self-assembly micelles with the diameter around 50 nm could passively migrate to inflamed sites. The presence of hydrazone linkers avoided the drug leakage in circulation and ensured the preferential release in acidic arthritic joints. Here, we evaluated how the polymer-drug micelles with different density of drug payloads influenced the release pattern, pharmacokinetics and biodistribution, as well as the most importantly, the duration of the therapeutic efficacy. Our exploration would offer the chemical and structural basis for designing and optimizing the nanocarriers for enhanced therapeutic efficacy.

Electronic Supplementary Material

Download File(s)
12274_2018_2233_MOESM1_ESM.pdf (1.6 MB)

References

1

Smolen, J. S.; Steiner, G. Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2003, 2, 473–488.

2

van Vollenhoven, R. F. Treatment of rheumatoid arthritis: State of the art 2009. Nat. Rev. Rheumatol. 2009, 5, 531–541.

3

Yuan, F.; Quan, L. D.; Cui, L.; Goldring, S. R.; Wang, D. Development of macromolecular prodrug for rheumatoid arthritis. Adv. Drug Deliv. Rev. 2012, 64, 1205–1219.

4

Wang, Q.; Sun, X. Recent advances in nanomedicines for the treatment of Rheumatoid arthritis. Biomater. Sci. 2017, 5, 1407–1420.

5

Dolati, S.; Sadreddini, S.; Rostamzadeh, D.; Ahmadi, M.; Jadidi-Niaragh, F.; Yousefi, M. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed. Pharmacother. 2016, 80, 30–41.

6

Tarner, I. H.; Müller-Ladner, U. Drug delivery systems for the treatment of rheumatoid arthritis. Expert Opin. Drug Deliv. 2008, 5, 1027–1037.

7

Prasad, L. K.; O'Mary, H.; Cui, Z. R. Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine 2015, 10, 2063–2074.

8

Koenders, M. I.; van den Berg, W. B. Novel therapeutic targets in rheumatoid arthritis. Trends. Pharmacol. Sci. 2015, 36, 189–195.

9

Buch, M. H.; Bingham, S. J.; Bryer, D.; Emery, P. Long-term infliximab treatment in rheumatoid arthritis: Subsequent outcome of initial responders. Rheumatology (Oxford) 2007, 46, 1153–1156.

10

Chaudhari, K.; Rizvi, S.; Syed, B. A. Rheumatoid arthritis: Current and future trends. Nat. Rev. Drug Discov. 2016, 15, 305–306.

11

Yang, M. D.; Feng, X. R.; Ding, J. X.; Chang, F.; Chen, X. S. Nanotherapeutics relieve rheumatoid arthritis. J. Control. Release 2017, 252, 108–124.

12

Ferrari, M.; Onuoha, S. C.; Pitzalis, C. Trojan horses and guided missiles: Targeted therapies in the war on arthritis. Nat. Rev. Rheumatol. 2015, 11, 328–337.

13

Wang, D.; Goldring, S. R. The bone, the joints and the balm of Gilead. Mol. Pharm. 2011, 8, 991–993.

14

Wang, Q.; Jiang, J. Y.; Chen, W. F.; Jiang, H.; Zhang, Z. R.; Sun, X. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J. Control. Release 2016, 230, 64–72.

15

Quan, L. D.; Zhang, Y. J.; Crielaard, B. J.; Dusad, A.; Lele, S. M.; Rijcken, C. J. F.; Metselaar, J. M.; Kostková, H.; Etrych, T.; Ulbrich, K. et al. Nanomedicines for inflammatory arthritis: Head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano 2013, 8, 458–466.

16

Kim, S.; Shi, Y. Z.; Kim, J. Y.; Park, K.; Cheng, J. X. Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivo stability, and micelle–cell interaction. Expert Opin. Drug Deliv. 2010, 7, 49–62.

17

Wang, D.; Miller, S. C.; Liu, X. M.; Anderson, B.; Wang, X. S.; Goldring, S. R. Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res. Ther. 2007, 9, R2.

18

Liu, X. M.; Quan, L. D.; Tian, J.; Alnouti, Y.; Fu, K.; Thiele, G. M.; Wang, D. Synthesis and evaluation of a well-defined HPMA copolymer-dexamethasone conjugate for effective treatment of rheumatoid arthritis. Pharm. Res. 2008, 25, 2910–2919.

19

Hrubý, M.; Koňák, Č.; Ulbrich, K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control. Release 2005, 103, 137–148.

20

Li, C. H.; Li, H. M.; Wang, Q.; Zhou, M. L.; Li, M.; Gong, T.; Zhang, Z. R.; Sun, X. pH-sensitive polymeric micelles for targeted delivery to inflamed joints. J Control. Release 2017, 246, 133–141.

21

Quan, L. D.; Yuan, F.; Liu, X. M.; Huang, J. G.; Alnouti, Y.; Wang, D. Pharmacokinetic and biodistribution studies of N-(2-Hydroxypropyl)methacrylamide copolymer-dexamethasone conjugates in adjuvant-induced arthritis rat model. Mol. Pharm. 2010, 7, 1041–1049.

22

Hegen, M.; Keith, J. C. Jr.; Collins, M.; Nickerson-Nutter, C. L. Utility of animal models for identification of potential therapeutics for rheumatoid arthritis. Ann. Rheum. Dis. 2008, 67, 1505–1515.

23

Dell'Antonio, G.; Quattrini, A.; Dal Cin, E.; Fulgenzi, A.; Ferrero, M. E. Antinociceptive effect of a new P2Z/P2X7 antagonist, oxidized ATP, in arthritic rats. Neurosci. Lett. 2002, 327, 87–90.

24

Crielaard, B. J.; Rijcken, C. J. F.; Quan, L. D.; van der Wal, S.; Altintas, I.; van der Pot, M.; Kruijtzer, J. A. W.; Liskamp, R. M. J.; Schiffelers, R. M.; van Nostrum, C. F. et al. Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angew. Chem. , Int. Ed. 2012, 51, 7254–7258.

25

Metselaar, J. M.; van den Berg, W. B.; Holthuysen, A. E. M.; Wauben, M. H. M.; Storm, G.; van Lent, P. L. E. M. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type Ⅱ arthritis. Ann. Rheum. Dis. 2004, 63, 348–353.

26

Gasparyan, A. Y.; Stavropoulos-Kalinoglou, A.; Mikhailidis, D. P.; Douglas, K. M. J.; Kitas, G. D. Platelet function in rheumatoid arthritis: Arthritic and cardiovascular implications. Rheumatol. Int. 2011, 31, 153–164.

27

Knijff-Dutmer, E. A. J.; Koerts, J.; Nieuwland, R.; Kalsbeek-Batenburg, E. M.; van de Laar, M. A. F. J. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum. 2002, 46, 1498–1503.

28

Jeyachandran, Y. L.; Mielczarski, E.; Rai, B.; Mielczarski, J. A. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces. Langmuir. 2009, 25, 11614–11620.

29

Metselaar, J. M.; Wauben, M. H. M.; Wagenaar-Hilbers, J. P. A.; Boerman, O. C.; Storm, G. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis Rheum. 2003, 48, 2059–2066.

Nano Research
Pages 421-428
Cite this article:
Wang Q, Li Y, Chen X, et al. Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection. Nano Research, 2019, 12(2): 421-428. https://doi.org/10.1007/s12274-018-2233-3
Topics:

848

Views

30

Crossref

N/A

Web of Science

35

Scopus

1

CSCD

Altmetrics

Received: 07 July 2018
Revised: 09 October 2018
Accepted: 19 October 2018
Published: 08 November 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return