AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode

Xianshu Wang1,2,§Zhenghui Pan2,§Yang Wu3Xiaoyu Ding2Xujia Hong1Guoguang Xu2Meinan Liu2Yuegang Zhang2,3,4( )Weishan Li1,4( )
School of Chemistry and Environment,South China Normal University,Guangzhou,510006,China;
i-lab,Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences,Suzhou,215123,China;
Department of Physics,Tsinghua University,Beijing,100084,China;
Engineering Research Center of MTEES (Ministry of Education),Research Center of BMET (Guangdong Province), and Key Laboratory of ETESPG (GHEI), South China Normal University,Guangzhou,510006,China;

§ Xianshu Wang and Zhenghui Pan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Lithium metal anode for batteries has attracted extensive attentions, but its application is restricted by the hazardous dendritic Li growth and dead Li formation. To address these issues, a novel Li anode is developed by infiltrating molten Li metal into conductive carbon cloth decorated with zinc oxide arrays. In carbonate-based electrolyte, the symmetric cell shows no short circuit over 1, 500 h at 1 mAdcm-2, and stable voltage profiles at 3 mAdcm-2 for ~ 300 h cycling. A low overpotential of ~ 243 mV over 350 cycles at a high current density of 10 mAdcm-2 is achieved, compared to the seriously fluctuated voltage and fast short circuit in the cell using bare Li metal. Meanwhile, the asymmetric cell withstands 1, 000 cycles at 10 C (1 C = 167 mAhdg-1) compared to the 210 cycles for the cell using bare Li anode. The excellent performance is attributed to the well-regulated Li plating/stripping driven from the formation of LiZn alloy on the wavy carbon fibers, resulting in the suppression of dendrite growth and pulverization of the Li electrode during cycling.

Electronic Supplementary Material

Download File(s)
12274_2018_2245_MOESM2_ESM.pdf (4.3 MB)

References

1

Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.

2

Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

3

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

4

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

5

Wang, D.; Zhang, W.; Zheng, W. T.; Cui, X. Q.; Rojo, T.; Zhang, Q. Towards high-safe lithium metal anodes: Suppressing lithium dendrites via tuning surface energy. Adv. Sci. 2017, 4, 1600168.

6

Lin, D. C.; Liu, Y. Y.; Pei, A.; Cui, Y. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Res. 2017, 10, 4003–4026.

7

Guo, Y. P.; Li, H. Q.; Zhai, T. Y. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 2017, 29, 1700007.

8

Li, N.; Wei, W. F.; Xie, K. Y.; Tan, J. W.; Zhang, L.; Luo, X. D.; Yuan, K.; Song, Q.; Li, H. J.; Shen, C. et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries. Nano Lett. 2018, 18, 2067–2073.

9

Zhang, K.; Lee, G. H.; Park, M.; Li, W. J.; Kang, Y. M. Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv. Energy Mater. 2016, 6, 1600811.

10

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. , Int. Ed. 2013, 52, 13186–13200.

11

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

12

Xin, S.; Chang, Z. W.; Zhang, X. B.; Guo, Y. G. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl. Sci. Rev. 2017, 4, 54–70.

13

Song, Q.; Yan, H. B.; Liu, K. D.; Xie, K. Y.; Li, W.; Gai, W. H.; Chen, G. H.; Li, H. J.; Shen, C.; Fu, Q. G. et al. Vertically grown edge-rich graphene nanosheets for spatial control of Li nucleation. Adv. Energy Mater. 2018, 8, 1800564.

14

Yan, K.; Lee, H. W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016–6022.

15

Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

16

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

17

Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 2016, 28, 2155–2162.

18

Lu, L. L.; Ge, J.; Yang, J. N.; Chen, S. M.; Yao, H. B.; Zhou, F.; Yu, S. H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431–4437.

19

Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

20

Ye, H.; Xin, S.; Yin, Y. X.; Li, J. Y.; Guo, Y. G.; Wan, L. J. Stable Li plating/ stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J. Am. Chem. Soc. 2017, 139, 5916–5922.

21

Jin, C. B.; Sheng, O. W.; Luo, J. M.; Yuan, H. D.; Fang, C.; Zhang, W. K.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C. et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 2017, 37, 177–186.

22

Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

23

Zuo, T. T.; Wu, X. W.; Yang, C. P.; Yin, Y. X.; Ye, H.; Li, N. W.; Guo, Y. G. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv. Mater. 2017, 29, 1700389.

24

Raji, A. R. O.; Villegas Salvatierra, R.; Kim, N. D.; Fan, X. J.; Li, Y. L.; Silva, G. A. L.; Sha, J. W.; Tour, J. M. Lithium batteries with nearly maximum metal storage. ACS Nano 2017, 11, 6362–6369.

25

Wang, X. S.; Pan, Z. H.; Wu, Y.; Xu, G. G.; Zheng, X. W.; Qiu, Y. C.; Liu, M. N.; Zhang, Y. G.; Li, W. S. Reducing lithium deposition overpotential with silver nanocrystals anchored on graphene aerogel. Nanoscale 2018, 10, 16562–16567.

26

Liu, W.; Li, W. Y.; Zhuo, D.; Zheng, G. Y.; Lu, Z. D.; Liu, K.; Cui, Y. Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes. ACS Cent. Sci. 2017, 3, 135–140.

27

Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. , Int. Ed. 2017, 56, 7764–7768.

28

Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356–1365.

29

Liang, Z.; Lin, D. C.; Zhao, J.; Lu, Z. D.; Liu, Y. Y.; Liu, C.; Lu, Y. Y.; Wang, H. T.; Yan, K.; Tao, X. Y. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. USA 2016, 113, 2862–2867.

30

Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

31

Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

32

Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632.

33

Zhang, Y.; Luo, W.; Wang, C. W.; Li, Y. J.; Chen, C. J.; Song, J. W.; Dai, J. Q.; Hitz, E. M.; Xu, S. M.; Yang, C. P. et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc. Natl. Acad. Sci. USA 2017, 114, 3584–3589.

34

Chi, S. S.; Liu, Y. C.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

35

Wang, C. W.; Gong, Y. H.; Liu, B. Y.; Fu, K.; Yao, Y. G.; Hitz, E.; Li, Y. J.; Dai, J. Q.; Xu, S. M.; Luo, W. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017, 17, 565–571.

36

Fu, K.; Gong, Y. H.; Liu, B. Y.; Zhu, Y. Z.; Xu, S. M.; Yao, Y. G.; Luo, W.; Wang, C. W.; Lacey S. D.; Dai, J. Q. et al. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 2017, 3, e1601659.

37

Deng, W.; Zhou, X. F.; Fang, Q. L.; Liu, Z. P. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes. Adv. Energy Mater. 2018, 8, 1703152.

38

He, S. S.; Qiu, L. B.; Fang, X.; Guan, G. Z.; Chen, P. N.; Zhang, Z. T.; Peng, H. S. Radically grown obelisk-like ZnO arrays for perovskite solar cell fibers and fabrics through a mild solution process. J. Mater. Chem. A 2015, 3, 9406–9410.

39

Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. D. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 2005, 5, 1231–1236.

40

Yi, S. H.; Choi, S. K.; Jang, J. M.; Kim, J. A.; Jung, W. G. Low-temperature growth of ZnO nanorods by chemical bath deposition. J. Colloid Interface Sci. 2007, 313, 705–710.

41

Li, Q.; Zhu, S. P.; Lu, Y. Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 2017, 27, 1606422.

42

Bieker, G.; Winter, M.; Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 2015, 17, 8670–8679.

43

Li, N. W.; Yin, Y. X.; Li, J. Y.; Zhang, C. H.; Guo, Y. G. Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping. Adv. Sci. 2017, 4, 1600400.

44

Heine, J.; Krüger, S.; Hartnig, C.; Wietelmann, U.; Winter, M.; Bieker, P. Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv. Energy Mater. 2014, 4, 1300815.

45

Hafez, A. M.; Jiao, Y. C.; Shi, J. J.; Ma, Y.; Cao, D. X.; Liu, Y. Y.; Zhu, H. L. Stable metal anode enabled by porous lithium foam with superior ion accessibility. Adv. Mater. 2018, 30, 1802156.

46

Liu, S. F.; Xia, X. H.; Yao, Z. J.; Wu, J. B.; Zhang, L. Y.; Deng, S. J.; Zhou, C. G.; Shen, S. H.; Wang, X. L.; Tu, J. P. Straw-brick-like carbon fiber cloth/lithium composite electrode as an advanced lithium metal anode. Small Methods 2018, 2, 1800035.

47

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

48

Yamaki, J. I.; Tobishima, S. I.; Hayashi K.; Saito, K.; Nemoto, Y.; Arakawa, M. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 1998, 74, 219–227.

49

Lu, Y. Y.; Tu, Z. Y.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961–969.

Nano Research
Pages 525-529
Cite this article:
Wang X, Pan Z, Wu Y, et al. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Research, 2019, 12(3): 525-529. https://doi.org/10.1007/s12274-018-2245-z
Topics:

757

Views

89

Crossref

N/A

Web of Science

89

Scopus

8

CSCD

Altmetrics

Received: 15 September 2018
Revised: 27 October 2018
Accepted: 12 November 2018
Published: 23 November 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return