Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Black phosphorus inverter devices enabled by in-situ aluminum surface modification

Yue Zheng1,2,§Zehua Hu2,§Cheng Han3Rui Guo4Du Xiang2,4Bo Lei2Yanan Wang2Jun He5Min Lai1Wei Chen2,4,6()
School of Physics and Optoelectronic Engineering,Nanjing University of Information Science & Technology,Nanjing,210044,China;
Department of Physics,National University of Singapore,Singapore,117542,Singapore;
SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology,Shenzhen University,Shenzhen,518060,China;
Department of Chemistry,National University of Singapore,Singapore,117543,Singapore;
School of Physics and Electronics,Central South University,Changsha,410083,China;
National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China

§ Yue Zheng and Zehua Hu contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Two-dimensional black phosphorus (BP) generally exhibits a hole-dominated transport characteristic when configured as field-effect transistor devices. The effective control of charge carrier type and concentration is very crucial for the application of BP in complementary electronics. Herein, we report a facile and effective electron doping methodology on BP, through in situ surface modification with aluminum (Al). The electron mobility of few-layer BP is found to be largely enhanced to ~ 10.6 cm2·V-1·s-1 by over 6 times after aluminum modification. In situ photoelectron spectroscopy characterization reveals the formation of Al-P covalent bond at the interface, which can also serve as local gate to tune the transport properties in BP layers. Finally, a spatially-controlled aluminum doping technique is employed to establish a p-n homojunction on a single BP flake, and hence to realize the complementary inverter devices, where the highest gain value of ~ 33 is obtained.

Electronic Supplementary Material

Download File(s)
12274_2018_2246_MOESM1_ESM.pdf (2.9 MB)

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D. A.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652-655.

3

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

4

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.

5

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780-793.

6

Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563-8569.

7

Yao, B. C.; Huang, S. -W.; Liu, Y.; Vinod, A., K.; Choi, C.; Hoff, M.; Li, Y. N.; Yu, M. B.; Feng, Z. Y.; Kwong, D. L. et al. Gate-tunable frequency combs in graphene-nitride microresonators. Nature 2018, 558, 410-414.

8

Xiang, D.; Liu, T.; Xu, J. L.; Tan, J. Y.; Hu, Z. H.; Lei, B.; Zheng, Y.; Wu, J.; Neto, A. H. C.; Liu, L. et al. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun. 2018, 9, 2966.

9

Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

10

Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355.

11

Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.

12

Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487-496.

13

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.

14

Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174-8181.

15

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. M.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.

16

Allain, A.; Kis, A. Electron and hole mobilities in single-layer WSe2. ACS Nano 2014, 8, 7180-7185.

17

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.

18

Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523-4530.

19

Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732-2743.

20

Li, L. K.; Yang, F. Y.; Ye, G. J.; Zhang, Z. C.; Zhu, Z. W.; Lou, W. K.; Zhou, X. Y.; Li, L.; Watanabe, K.; Taniguchi, T. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 2016, 11, 593-597.

21

Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

22

Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21-25.

23

Brown, A.; Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 1965, 19, 684-685.

24

Hultgren, R.; Gingrich, N. S.; Warren, B. E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 1935, 3, 351-355.

25

Zhang, C. D.; Lian, J. C.; Yi, W.; Jiang, Y. H.; Liu, L. W.; Hu, H.; Xiao, W. D.; Du, S. X.; Sun, L. L.; Gao, H. J. Surface structures of black phosphorus investigated with scanning tunneling microscopy. J. Phys. Chem. C 2009, 113, 18823-18826.

26

Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707-713.

27

Huang, M. Q.; Wang, M. L.; Chen, C.; Ma, Z. W.; Li, X. F.; Han, J. B.; Wu, Y. Q. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 2016, 28, 3481-3485.

28

Han, C.; Hu, Z. H.; Carvalho, A.; Guo, N.; Zhang, J. L.; Hu, F.; Xiang, D.; Wu, J.; Lei, B.; Wang, L. et al. Oxygen induced strong mobility modulation in few-layer black phosphorus. 2D Mater. 2017, 4, 021007.

29

Du, Y. C.; Liu, H.; Deng, Y. X.; Ye, P. D. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano 2014, 8, 10035-10042.

30

Perello, D. J.; Chae, S. H.; Song, S.; Lee, Y. H. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat. Commun. 2015, 6, 7809.

31

Das, S.; Demarteau, M.; Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 2014, 8, 11730-11738.

32

Zhang, J. L.; Han, C.; Hu, Z. H.; Wang, L.; Liu, L.; Wee, A. T. S.; Chen, W. 2D phosphorene: Epitaxial growth and interface engineering for electronic devices. Adv. Mater., in press, DOI: 10.1002/adma.201802207.

33

Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B. G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723-726.

34

Han, C.; Hu, Z. H.; Gomes, L. C.; Bao, Y.; Carvalho, A.; Tan, S. J. R.; Lei, B.; Xiang, D.; Wu, J.; Qi, D. Y. et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 2017, 17, 4122-4129.

35

Xiang, D.; Han, C.; Wu, J.; Zhong, S.; Liu, Y. Y.; Lin, J. D.; Zhang, X. -A.; Hu, W. P.; Özyilmaz, B.; Neto, A. C. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 2015, 6, 6485.

36

Wu, J.; Koon, G. K. W.; Xiang, D.; Han, C.; Toh, C. T.; Kulkarni, E. S.; Verzhbitskiy, I.; Carvalho, A.; Rodin, A. S.; Koenig, S. P. et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano 2015, 9, 8070-8077.

37

Ryder, C. R.; Wood, J. D.; Wells, S. A.; Yang, Y.; Jariwala, D.; Marks, T. J.; Schatz, T. J.; Hersam, M. C. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 2016, 8, 597-602.

38

Abellán, G.; Lloret, V.; Mundloch, U.; Marcia, M.; Neiss, C.; Görling, A.; Varela, M.; Hauke, F.; Hirsch, A. Noncovalent functionalization of black phosphorus. Angew. Chem. 2016, 128, 14777-14782.

39

Liu, Y. D.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 2017, 27, 1604638.

40

Prakash, A.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Black phosphorus N-type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping. Small 2017, 13, 1602909.

41

Liu, Y. D.; Ang, K. W. Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano 2017, 11, 7416-7423.

42

Sugai, S.; Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 1985, 53, 753-755.

43

Hu, Z. H.; Li, Q.; Lei, B.; Zhou, Q. H.; Xiang, D.; Lyu, Z.; Hu, F.; Wang, J. Y.; Ren, Y. J.; Guo, R. et al. Water-catalyzed oxidation of few-layer black phosphorous in a dark environment. Angew. Chem. 2017, 56, 9131-9135.

44

Hu, T.; Hong, J. S. First-principles study of metal adatom adsorption on black phosphorene. J. Phys. Chem. C 2015, 119, 8199-8207.

45

Zhu, H.; McDonnell, S.; Qin, X. Y.; Azcatl, A.; Cheng, L. X.; Addou, R.; Kim, J.; Ye, P. D.; Wallace, R. M. Al2O3 on black phosphorus by atomic layer deposition: An in situ interface study. ACS Appl. Mater. Inter 2015, 7, 13038-13043.

46

Engel, M.; Steiner, M.; Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 2014, 14, 6414-6417.

47

Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247-252.

48

Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. -J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648-4655.

49

Hu, Z. H.; Li, Q.; Lei, B.; Wu, J.; Zhou, Q. H.; Gu, C. D.; Wen, X. L.; Wang, J. Y.; Liu, Y. P.; Li, S. S. et al. Abnormal near-infrared absorption in 2D black phosphorus induced by Ag nanoclusters surface functionalization. Adv. Mater. 2018, 30, 1801931.

Nano Research
Pages 531-536
Cite this article:
Zheng Y, Hu Z, Han C, et al. Black phosphorus inverter devices enabled by in-situ aluminum surface modification. Nano Research, 2019, 12(3): 531-536. https://doi.org/10.1007/s12274-018-2246-y
Topics:
Metrics & Citations  
Article History
Copyright
Return