Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The use of TiO2 as an anode in rechargeable sodium-ion batteries (NIBs) is hampered by intrinsic low electronic conductivity of TiO2 and inferior electrode kinetics. Here, a high-performance TiO2 electrode for NIBs is presented by designing a multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies (Cu-MPTO). The in-situ grown well-dispersed copper nanodots of about 3 nm on TiO2 surface could significantly enhance electronic conductivity of the TiO2 fibers. The one-dimensional multichannel porous structure could facilitate the electrolyte to soak in, leading to short transport path of Na+ through carbon toward the TiO2 nanoparticle. The Cu2+-doping induced oxygen vacancies could decrease the bandgap of TiO2, resulting in easy electron trapping. With this strategy, the Cu-MPTO electrodes render an outstanding rate performance for NIBs (120 mAh·g-1 at 20 C) and a superior cycling stability for ultralong cycle life (120 mAh·g-1 at 20 C and 96.5% retention over 2, 000 cycles). Density functional theory (DFT) calculations also suggest that Cu2+ doping can enhance the conductivity and electron transfer of TiO2 and lower the sodiation energy barrier. This strategy is confirmed to be a general process and could be extended to improve the performance of other materials with low electronic conductivity applied in energy storage systems.
Fang, Y. J.; Yu, X. Y.; Lou, X. W. A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2. microspheres. Angew. Chem. , Int. Ed. 2017, 56, 5801–5805.
Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.
Liu, H.; Liu, X. X.; Li, W.; Guo, X.; Wang, Y.; Wang, G. X.; Zhao, D. Y. Porous carbon composites for next generation rechargeable lithium batteries. Adv. Energy Mater. 2017, 7, 1700283.
Zhao, J.; Zhao, L. W.; Dimov, N.; Okada S.; Nishida, T. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries. J. Electrochem. Soc. 2013, 160, A3077–A3081.
Fang, C.; Huang, Y. H.; Zhang, W. X.; Han, J. T.; Deng, Z.; Cao, Y. L.; Yang, H. X. Routes to high energy cathodes of sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501727.
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.
Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.
Jiang, Y.; Wu, Y.; Chen, Y. X.; Qi, Z. Y.; Shi, J. A.; Gu, L.; Yu, Y. Design nitrogen (N) and sulfur (S) co-doped 3D graphene network architectures for high-performance sodium storage. Small 2018, 14, 1703471.
Sangster, J. C-Na (carbon-sodium) system. J. Phase Equilib. Diff. 2007, 28, 571–579.
Stevens, D.; Dahn, J. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.
Liu, J.; Yu, L. T.; Wu, C.; Wen, Y. R.; Yin, K. B.; Chiang, F. K.; Hu, R. Z.; Liu, J. W.; Sun, L. T.; Gu, L. et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk–shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017, 17, 2034–2042.
Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.
Yang, X.; Zhang, R. Y.; Zhao, J.; Wei, Z. X.; Wang, D. X.; Bie, X. F.; Gao, Y.; Wang, J.; Du, F.; Chen, G. Amorphous tin-based composite oxide: A high-rate and ultralong-life sodium-ion-storage material. Adv. Energy Mater. 2018, 8, 1701827.
Jian, Z. L.; Zhao, B.; Liu, P.; Li, F. J.; Zheng, M. B.; Chen, M. W.; Shi, Y.; Zhou, H. S. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem. Commun. 2014, 50, 1215–1217.
Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.
Wei, X.; Li, W. H.; Shi, J. A.; Gu, L.; Yu, Y. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 2015, 7, 27804–27809.
Wu, C.; Dou, S. X.; Yu, Y. The state and challenges of anode materials based on conversion reactions for sodium storage. Small 2018, 14, 1703671.
Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.
Kim, K. T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y. K.; Lu, J.; Amine, K.; Myung, S. T. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416–422.
Liu, H.; Li, W.; Shen, D. K.; Zhao, D. Y.; Wang, G. X. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 2015, 137, 13161–13166.
Yu, L. T.; Liu, J.; Xu, X. J.; Zhang, L. G.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Yang, L. C.; Zhu, M. Ilmenite nanotubes for high stability and high rate sodium-ion battery anodes. ACS Nano 2017, 11, 5120–5129.
Shin, J. Y.; Joo, J. H.; Samuelis, D.; Maier, J. Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 2012, 24, 543–551.
Zhu, X. M.; Li, Q.; Fang, Y. J.; Liu, X. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Graphene-modified TiO2 microspheres synthesized by a facile spray-drying route for enhanced sodium-ion storage. Part. Part. Syst. Char. 2016, 33, 545–552.
Mo, R. W.; Lei, Z. Y.; Sun, K. N.; Rooney, D. Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv. Mater. 2014, 26, 2084–2088.
Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.
Xu, G. L.; Xiao, L. S.; Sheng, T.; Liu, J. Z.; Hu, Y. X.; Ma, T. Y.; Amine, R.; Xie, Y. Y.; Zhang, X. Y.; Liu, Y. Z. et al. Electrostatic self-assembly enabling integrated bulk and interfacial sodium storage in 3D titania-graphene hybrid. Nano Lett. 2018, 18, 336–346.
Nong, S. Y.; Dong, W. J.; Yin, J. W.; Dong, B. W.; Lu, Y.; Yuan, X. T.; Wang, X.; Bu, K. J.; Chen, M. Y.; Jiang, S. D. et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 5719–5727.
Li, C. C.; Wang, T.; Zhao, Z. J.; Yang, W. M.; Li, J. F.; Li, A.; Yang, Z. L.; Ozin, G. A.; Gong, J. L. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem. , Int. Ed. 2018, 57, 5278–5282.
Khalid, N. R.; Ahmed, E.; Hong, Z. L.; Ahmad, M.; Zhang, Y. W.; Khalid, S. Cu-doped TiO2 nanoparticles/graphene composites for efficient visible-light photocatalysis. Ceram. Int. 2013, 39, 7107–7113.
Guo, Y. G.; Hu, Y. S.; Sigle, W.; Maier, J. Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks. Adv. Mater. 2007, 19, 2087–2091.
Yu, Y.; Yan, C. L.; Gu, L.; Lang, X. Y.; Tang, K.; Zhang, L.; Hou, Y.; Wang, Z. F.; Chen, M. W.; Schmidt, O. G. et al. Three-dimensional (3D) bicontinuous Au/amorphous-Ge thin films as fast and high-capacity anodes for lithium-ion batteries. Adv. Energy Mater. 2013, 3, 281–285.
Wu, Y.; Liu, X. W.; Yang, Z. Z.; Gu, L.; Yu, Y. Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 2016, 12, 3522–3529.
Wu, Y.; Jiang, Y.; Shi, J. N.; Gu, L.; Yu, Y. Multichannel porous TiO2 hollow nanofibers with rich oxygen vacancies and high grain boundary density enabling superior sodium storage performance. Small 2017, 13, 1700129.
Zhang, Y.; Ding, Z. Y.; Foster, C. W.; Banks, C. E.; Qiu, X. Q.; Ji, X. B. Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 2017, 27, 1700856.
Ni, J. F.; Fu, S. D.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 2016, 28, 2259–2265.
Ni, J. F.; Fu, S. D.; Yuan, Y. F.; Ma, L.; Jiang, Y.; Li, L.; Lu, J. Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation. Adv. Mater. 2018, 30, 1704337.
Choudhury, B.; Dey, M.; Choudhury, A. Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int. Nano Lett. 2013, 3, 25.
Hong, Y. J.; Yoon, J. W.; Lee, J. H.; Kang, Y. C. A new concept for obtaining SnO2 fiber-in-tube nanostructures with superior electrochemical properties. Chem. —Eur. J. 2015, 21, 371–376.
Peng, S. J.; Li, L. L.; Hu, Y. X.; Srinivasan, M.; Cheng, F. Y.; Chen, J.; Ramakrishna, S. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 2015, 9, 1945–1954.
Zhang, G. Q.; Xia, B. Y.; Xiao, C.; Yu, L.; Wang, X.; Xie, Y.; Lou, X. W. General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew. Chem. , Int. Ed. 2013, 52, 8643–8647.
Xu, G. B.; Li, W.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K. Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries. J. Power Sources 2015, 276, 247–254.
Krajewski, M.; Michalska, M.; Hamankiewicz, B.; Ziolkowska, D.; Korona, K. P.; Jasinski, J. B.; Kaminska, M.; Lipinska, L.; Czerwinski, A. Li4Ti5O12 modified with Ag nanoparticles as an advanced anode material in lithium-ion batteries. J. Power Sources 2014, 245, 764–771.
Liu, Z. M.; Zhang, N. Q.; Wang, Z. J.; Sun, K. N. Highly dispersed Ag nanoparticles (< 10 nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery. J. Power Sources 2012, 205, 479–482.
Hou, J. G.; Sun, Y. Q.; Wu, Y. Z.; Cao, S. Y.; Sun, L. C. Promoting active sites in core–shell nanowire array as Mott–Schottky electrocatalysts for efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1704447.
Valero, J. M.; Obregón, S.; Colón, G. Active site considerations on the photocatalytic H2 evolution performance of Cu-Doped TiO2 obtained by different doping methods. ACS Catal. 2014, 4, 3320–3329.
Zhang, J. Z.; Zhang, J.; Bao, T. Z.; Xie, X. H.; Xia, B. J. Electrochemical and stress characteristics of SiO/Cu/expanded graphite composite as anodes for lithium ion batteries. J. Power Sources 2017, 348, 16–20.
Chen, J.; Song, W. X.; Hou, H. S.; Zhang, Y.; Jing, M. J.; Jia, X. N.; Ji, X. B. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 6793–6801.
Feng, J. X.; Wu, J. Q.; Tong, Y. X.; Li, G. R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. 2018, 140, 610–617.
Ni, D. W.; Shen, H. Y.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Synthesis of high efficient Cu/TiO2 photocatalysts by grinding and their size-dependent photocatalytic hydrogen production. Appl. Surf. Sci. 2017, 409, 241–249.
Su, T.; Yang, Y. L.; Na, Y.; Fan, R. Q.; Li, L.; Wei, L. G.; Yang, B.; Cao, W. W. An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7, 3754–3763.
Grunin, V. S.; Davtyan, G. D.; Ioffe, V. A.; Patrina, I. B. EPR of Cu2+ and radiation centres in anatase (TiO2). Phys. Status Solidi 1976, 77, 85–92.
You, M.; Kim, T. G.; Sung, Y. M. Synthesis of cu-doped TiO2 nanorods with various aspect ratios and dopant concentrations. Cryst. Growth Des. 2009, 10, 983–987.
Bensouici, F.; Bououdina, M.; Dakhel, A. A.; Tala-Ighil, R.; Tounane, M.; Iratni, A.; Souier, T.; Liu, S.; Cai, W. Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films. Appl. Surf. Sci. 2017, 395, 110–116.
Xu, B.; Dong, L.; Chen, Y. Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system. J. Chem. Soc. Faraday Trans. 1998, 94, 1905–1909.
Kittel, C. Introduction to Solid State Physics, 7th ed.; Wiley: New York, 1996.
Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283.
Aguilar, T.; Navas, J.; Alcántara, R.; Fernández-Lorenzo, C.; Gallardo, J. J.; Blanco, G.; Martín-Calleja, J. A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap. Chem. Phys. Lett. 2013, 571, 49–53.
Shah, M. W.; Zhu, Y. Q.; Fan, X. Y.; Zhao, J.; Li, Y. X.; Asim, S.; Wang, C. Y. Facile synthesis of defective TiO2−x nanocrystals with high surface area and tailoring bandgap for visible-light photocatalysis. Sci. Rep. 2015, 5, 15804.
Fang, W. Z.; Zhou, Y.; Dong, C. C.; Xing, M. Y.; Zhang, J. L. Enhanced photocatalytic activities of vacuum activated TiO2 catalysts with Ti3+ and N co-doped. Catal. Today 2016, 266, 188–196.
Jin, Z.; Liu, C.; Qi, K.; Cui, X. Q. Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst. Sci. Rep. 2017, 7, 39695.
Oh, S. M.; Hwang, J. Y.; Yoon, C. S.; Lu, J.; Amine, K.; Belharouak, I.; Sun, Y. K. High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 11295–11301.
Wang, W. S.; Sa, Q. N.; Chen, J. H.; Wang, Y.; Jung, H.; Yin, Y. D. Porous TiO2/C nanocomposite shells as a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 6478–6483.
Xu, Y.; Zhou, M.; Wen, L. Y.; Wang, C. L.; Zhao, H. P.; Mi, Y.; Liang, L. Y.; Fu, Q.; Wu, M. H.; Lei, Y. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chem. Mater. 2015, 27, 4274–4280.
Jiang, Y.; Yang, Z. Z.; Li, W. H.; Zeng, L. C.; Pan, F. S.; Wang, M.; Wei, X.; Hu, G. T.; Gu, L.; Yu, Y. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium- ion batteries. Adv. Energy Mater. 2015, 5, 1402104.
Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene- coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.
Zhou, M.; Xu, Y.; Xiang, J. X.; Wang, C. L.; Liang, L. Y.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Lei, Y. Sodium-ion batteries: Understanding the orderliness of atomic arrangement toward enhanced sodium storage (Adv. Energy Mater. 23/2016). Adv. Energy Mater. 2016, 6, 1600448.
Zhu, Y.; Peng, L. L.; Chen, D. H.; Yu, G. H. Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: Toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. 2015, 16, 742–747.
Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.
Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.
Chen, Z.; Augustyn, V.; Jia, X. L.; Xiao, Q. F.; Dunn, B.; Lu, Y. F. High- performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 2012, 6, 4319–4327.
Zhu, Y. E.; Yang, L. P.; Sheng, J.; Chen, Y. N.; Gu, H. C.; Wei, J. P.; Zhou, Z. Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 2017, 7, 1701222.
He, H. N.; Huang, D.; Pang, W. K.; Sun, D.; Wang, Q.; Tang, Y. G.; Ji, X. B.; Guo, Z. P.; Wang, H. Y. Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance. Adv. Mater. 2018, 30, 1801013.
Xu, Z. L.; Lim, K.; Park, K. Y.; Yoon, G.; Seong, W. M.; Kang, K. Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1802099.
Zhang, Y.; Wang, C. W.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Nitrogen doped/ carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 2017, 7, 1600173.
Zhang, Y.; Foster, C. W.; Banks, C. E.; Shao, L. D.; Hou, H. S.; Zou, G. Q.; Chen, J.; Huang, Z. D.; Ji, X. B. Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv. Mater. 2016, 28, 9391–9399.