Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

All in one theranostic nanoplatform enables efficient anti-tumor peptide delivery for triple-modal imaging guided cancer therapy

Xiaoyan Qu1Zhengqing Liu2Bohan Ma1Na Li1,4Hongyang Zhao1Tian Yang3Yumeng Xue1Xiaozhi Zhang3Yongping Shao1Ying Chang1Jun Xu2Bo Lei1()Yaping Du2()
Frontier Institute of Science and Technology,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, State Key Laboratory for Manufacturing Systems Engineering, Instrument Analysis Center, Xi'an Jiaotong University,Xi'an,710000,China;
School of Materials Science and Engineering,National Institute for Advanced Materials, Center for Rare Earth and Inorganic Functional Materials, Nankai University,Tianjin,300350,China;
Department of Radiation Oncology,The First Affiliated Hospital of Xi'an Jiaotong University,Xi'an,710000,China;
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Developing a reliable system to efficiently and safely deliver peptide drugs into tumor tissues still remains a great challenge since the instability of peptide drugs and low ability to traverse the cell membrane. Herein, we constructed a multifunctional nanoplatform based on porous europium/gadolinium (Eu/Gd)-doped NaLa(MoO4)2 nanoparticles (NLM NPs) to deliver antitumor peptide of B-cell lymphoma/leukemia-2-like protein 11 (BIM) for cancer therapy. The porous NLM NPs exhibited inherent photoluminescent, magnetic and X-ray absorbable properties, which enable them for triple-modal bioimaging, including fluorescence, magnetic resonance imaging (MRI) and computed tomography (CT). This triple-modal bioimaging can contribute to monitoring NLM NPs biodistribution and guiding therapy in vitro and in vivo. Furthermore, the NLM NPs showed negligible cytotoxicity in vitro and tissue toxicity in vivo. Importantly, NLM NPs could load the antitumor peptide of BIM and efficiently improve the resistance of peptide drugs to proteolysis. The BIM peptide was efficiently delivered into the tumor cells by NLM NPs, which can inhibit the growth and promote the apoptosis of cancer cells in vitro, significantly inhibit the tumor growth in vivo. Notably, NLM-BIM theranostic nanoplatform exhibits low systemic toxicity and fewer side effects in vivo. The NLM NPs can serve as a promising multifunctional peptide delivery nanoplatform for multi-modal bioimaging and cancer therapy.

Electronic Supplementary Material

Download File(s)
12274_2018_2261_MOESM1_ESM.pdf (2.3 MB)

References

1

Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, Á. Assessment of the evolution of cancer treatment therapies. Cancers 2011, 3, 3279-3330.

2

Niu, F.; Yan, J.; Ma, B. H.; Li, S. C.; Shao, Y. P.; He, P. C.; Zhang, W. G.; He, W. X.; Ma, P. X.; Lu, W. Y. Lanthanide-doped nanoparticles conjugated with an anti-CD33 antibody and a p53-activating peptide for acute myeloid leukemia therapy. Biomaterials 2018, 167, 132-142.

3

Rhodes, C. A.; Pei, D. H. Bicyclic peptides as next-generation therapeutics. Chem. —Eur. J. 2017, 23, 12690-12703.

4

Yan, J.; He, W. X.; Yan, S. Q.; Niu, F.; Liu, T. Y.; Ma, B. H.; Shao, Y. P.; Yan, Y. W.; Yang, G.; Lu, W. Y. et al. Self-assembled peptide-lanthanide nanoclusters for safe tumor therapy: Overcoming and utilizing biological barriers to peptide drug delivery. ACS Nano 2018, 12, 2017-2026.

5

Buckley, C. D.; Pilling, D.; Henriquez, N. V.; Parsonage, G.; Threlfall, K.; Scheel-Toellner, D.; Simmons, D. L.; Akbar, A. N.; Lord, J. M.; Salmon, M. RGD peptides induce apoptosis by direct caspase-3 activation. Nature 1999, 397, 534-539.

6

Laakkonen, P.; Åkerman, M. E.; Biliran, H.; Yang, M.; Ferrer, F.; Karpanen, T.; Hoffman, R. M.; Ruoslahti, E. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc. Natl. Acad. Sci. USA 2004, 101, 9381-9386.

7

Reed, J. C. Apoptosis-targeted therapies for cancer. Cancer Cell 2003, 3, 17-22.

8

Gaspar, D.; Veiga, A. S.; Castanho, M. A. R. B. From antimicrobial to anticancer peptides. A review. Front. Microbiol. 2013, 4, 294.

9

Öberg, K.; Kvols, L.; Caplin, M.; Delle Fave, G.; de Herder, W.; Rindi, G.; Ruszniewski, P.; Woltering, E. A.; Wiedenmann, B. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann. Oncol. 2004, 15, 966-973.

10

Hemmings, H. C.; Egan, T. D. Pharmacology and Physiology for Anesthesia: Foundations and Clinical Application; Elsevier: Philadephia, 2013.

11

Caplin, M. E.; Pavel, M.; Ćwikła, J. B.; Phan, A. T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E. M.; Capdevila, J.; Wall, L. et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224-233.

12

Frokjaer, S.; Otzen, D. E. Protein drug stability: A formulation challenge. Nat. Rev. Drug Discov. 2005, 4, 298-306.

13

Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122-128.

14

Yan, J.; He, W. X.; Li, N.; Yu, M.; Du, Y. P.; Lei, B.; Ma, P. X. Simultaneously targeted imaging cytoplasm and nucleus in living cell by biomolecules capped ultra-small GdOF nanocrystals. Biomaterials 2015, 59, 21-29.

15

Giner-Casares, J. J.; Henriksen-Lacey, M.; Coronado-Puchau, M.; Liz-Marzán, L. M. Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Mater. Today 2016, 19, 19-28.

16

Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995-4021.

17

Ge, J.; Liu, K.; Niu, W.; Chen, M.; Wang, M.; Xue, Y. M.; Gao, C. H.; Ma, P. X.; Lei, B. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration. Biomaterials 2018, 175, 19-29.

18

Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740-2779.

19

Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008, 2, 889-896.

20

Shi, J. J.; Wang, L.; Gao, J.; Liu, Y.; Zhang, J.; Ma, R.; Liu, R. Y.; Zhang, Z. Z. A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials 2014, 35, 5771-5784.

21

Liu, C. Y.; Hou, Y.; Gao, M. Y. Are rare-earth nanoparticles suitable for in vivo applications? Adv. Mater. 2014, 26, 6922-6932.

22

Sun, Y.; Yu, M. X.; Liang, S.; Zhang, Y. J.; Li, C. G.; Mou, T. T.; Yang, W. J.; Zhang, X. Z.; Li, B.; Huang, C. H. et al. Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials 2011, 32, 2999-3007.

23

Meiser, F.; Cortez, C.; Caruso, F. Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles. Angew. Chem., Int. Ed. 2004, 43, 5954-5957.

24

Wang, M.; Mi, C. C.; Zhang, Y. X.; Liu, J. L.; Li, F.; Mao, C. B.; Xu, S. K. NIR-responsive silica-coated NaYbF4: Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. J. Phys. Chem. C 2009, 113, 19021-19027.

25

Yang, G. B.; Gong, H.; Liu, T.; Sun, X. Q.; Cheng, L.; Liu, Z. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 2015, 60, 62-71.

26

Mishra, S. K.; Kannan, S. Doxorubicin-conjugated bimetallic silver-gadolinium nanoalloy for multimodal MRI-CT-optical imaging and pH-responsive drug release. ACS Biomater. Sci. Eng. 2017, 3, 3607-3619.

27

Bu, W. B.; Chen, Z. X.; Chen, F.; Shi, J. L. Oleic acid/oleylamine cooperative-controlled crystallization mechanism for monodisperse tetragonal bipyramid NaLa(MoO4)2 nanocrystals. J. Phys. Chem. C 2009, 113, 12176-12185.

28

Kale, J.; Osterlund, E. J.; Andrews, D. W. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2017, 25, 65-80.

29

LaBelle, J. L.; Katz, S. G.; Bird, G. H.; Gavathiotis, E.; Stewart, M. L.; Lawrence, C.; Fisher, J. K.; Godes, M.; Pitter, K.; Kung, A. L. et al. A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers. J. Clin. Invest. 2012, 122, 2018-2031.

30

Adams, J. M. Therapeutic potential of a peptide targeting BCL-2 cell guardians in cancer. J. Clin. Invest. 2012, 122, 1965-1967.

31

Xu, Z. H.; Li, C. X.; Li, G. G.; Chai, R. T.; Peng, C.; Yang, D. M.; Lin, J. Self-assembled 3D urchin-like NaY(MoO4)2: Eu3+/Tb3+ microarchitectures: Hydrothermal synthesis and tunable emission colors. J. Phys. Chem. C 2010, 114, 2573-2582.

32

Park, J. H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009, 8, 331-336.

33

Ehlerding, E. B.; Chen, F.; Cai, W. B. Biodegradable and renal clearable inorganic nanoparticles. Adv. Sci. 2016, 3, 1500223.

34

Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923-932.

35

Liu, Z. Q.; Yin, Z. Y.; Cox, C.; Bosman, M.; Qian, X. F.; Li, N.; Zhao, H. Y.; Du, Y. P.; Li, J.; Nocera, D. G. Room temperature stable COx-free H2 production from methanol with magnesium oxide nanophotocatalysts. Sci. Adv. 2016, 2, e1501425.

36

Taminiau, T. H.; Karaveli, S.; van Hulst, N. F.; Zia, R. Quantifying the magnetic nature of light emission. Nat. Commun. 2012, 3, 979.

37

Saha, A.; Mohanta, S. C.; Deka, K.; Deb, P.; Devi, P. S. Surface-engineered multifunctional Eu: Gd2O3 nanoplates for targeted and pH-responsive drug delivery and imaging applications. ACS Appl. Mater. Interfaces 2017, 9, 4126-4141.

38

Jette, C. A.; Flanagan, A. M.; Ryan, J.; Pyati, U. J.; Carbonneau, S.; Stewart, R. A.; Langenau, D. M.; Look, A. T.; Letai, A. BIM and other BCL-2 family proteins exhibit cross-species conservation of function between zebrafish and mammals. Cell Death Differ. 2008, 15, 1063-1072.

39

Akiyama, T.; Dass, C. R.; Choong, P. F. M. Bim-targeted cancer therapy: A link between drug action and underlying molecular changes. Mol. Cancer Ther. 2009, 8, 3173-3180.

40

Dong, L. L.; Zhang, P.; Lei, P. P.; Song, S. Y.; Xu, X.; Du, K. M.; Feng, J.; Zhang, H. J. PEGylated GdF3: Fe nanoparticles as multimodal T1/T2-weighted MRI and X-ray CT imaging contrast agents. ACS Appl. Mater. Interfaces 2017, 9, 20426-20434.

41

Park, J. Y.; Baek, M. J.; Choi, E. S.; Woo, S.; Kim, J. H.; Kim, T. J.; Jung, J. C.; Chae, K. S.; Chang, Y. M.; Lee, G. H. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: Account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 2009, 3, 3663-3669.

42

Xue, Y. M.; Du, Y. Z.; Yan, J. Liu, Z. Q.; Ma, P. X.; Chen, X. F.; Lei, B. Monodisperse photoluminescent and highly biocompatible bioactive glass nanoparticles for controlled drug delivery and cell imaging. J. Mater. Chem. B. 2015, 3, 3831-3839.

43

Lyu, L.; Cheong, H.; Ai, X. Z.; Zhang, W. M.; Li, J.; Yang, H. H.; Lin, J.; Xing, B. G. Near-infrared light-mediated rare-earth nanocrystals: Recent advances in improving photon conversion and alleviating the thermal effect. NPG Asia Mater. 2018, 10, 685-702.

Nano Research
Pages 593-599
Cite this article:
Qu X, Liu Z, Ma B, et al. All in one theranostic nanoplatform enables efficient anti-tumor peptide delivery for triple-modal imaging guided cancer therapy. Nano Research, 2019, 12(3): 593-599. https://doi.org/10.1007/s12274-018-2261-z
Topics:
Metrics & Citations  
Article History
Copyright
Return