AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy

Junjie Yan1,2,3,4,§Xudong Zhang1,3,4,§Yang Liu5Yanqi Ye1,3,4Jicheng Yu1,3,4Qian Chen1,3,4Jinqiang Wang1,3,4Yuqi Zhang1,3,4Quanyin Hu1,3,4Yang Kang1,3,4Min Yang2( )Zhen Gu1,3,4,6,7( )
Joint Department of Biomedical Engineering,University of North Carolina at Chapel Hill and North Carolina State University,Raleigh, NC,27695,USA;
Molecular Imaging Center,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine,Wuxi,214063,China;
Department of Bioengineering,University of California,Los Angeles, CA,90095,USA;
California NanoSystems Institute,University of California,Los Angeles, CA,90095,USA;
Department of Materials Science & Engineering,North Carolina State University,Raleigh, NC,27695,USA;
Jonsson Comprehensive Cancer Center,University of California,Los Angeles, CA,90095,USA;
Center for Minimally Invasive Therapeutics,University of California,Los Angeles, CA,90095,USA;

§ Junjie Yan and Xudong Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The capping agents for liquid metal (LM) nanodroplets in aqueous solutions are restricted to thiol-containing and positively-charged molecules or macromolecules. However, both thiolate-metal complex and electrostatic interaction are liable to detachment upon strong mechanical forces such as sonication, leading to limited stability and applications. To address this, we utilized ultrasmall water soluble melanin nanoparticles (MNPs) as the capping agent, which exhibited strong metal binding capability with the oxide layer of gallium based LMs and resulted in enhanced stability. Interestingly, shape-controlled synthesis of LM nanodroplets can be achieved by the incorporation of MNPs. Various EGaIn nanostructures including nanorice, nanosphere and nanorod were obtained by simply tuning the feed ratio, sonication time, and suspension temperature. Among these shapes, EGaIn nanorice has the best photothermal conversion efficiency, which could be leveraged for photothermal therapy.

Electronic Supplementary Material

Download File(s)
12274_2018_2262_MOESM1_ESM.pdf (7 MB)

References

1

Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

2

Ye, X. C.; Collins, J. E.; Kang, Y. J.; Chen, J.; Chen, D. T. N.; Yodh, A. G.; Murray, C. B. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl. Acad. Sci. USA 2010, 107, 22430–22435.

3

Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132–138.

4

Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.

5

Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.

6

Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857– 13870.

7

Wang, Y. L.; Xia, Y. N. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 2004, 4, 2047–2050.

8

Merkel, T. J.; Herlihy, K. P.; Nunes, J.; Orgel, R. M.; Rolland, J. P.; DeSimone, J. M. Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir 2010, 26, 13086–13096.

9

Sau, T. K.; Rogach, A. L. Complex-Shaped Metal Nanoparticles: Bottom-Up Syntheses and Applications; Wiley-VCH: Weinheim, 2012.

10

Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Bottom-up synthesis of gold octahedra with tailorable hollow features. J. Am. Chem. Soc. 2011, 133, 10414–10417.

11

Chung, S. W.; Ginger, D. S.; Morales, M. W.; Zhang, Z. F.; Chandrasekhar, V.; Ratner, M. A.; Mirkin, C. A. Top-down meets bottom-up: Dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits. Small 2005, 1, 64–69.

12

Kazem, N.; Hellebrekers, T.; Majidi, C. Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 2017, 29, 1605985.

13

Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 2017, 29, 1606425.

14

Wang, Q.; Yu, Y.; Liu, J. Preparations, characteristics and applications of the functional liquid metal materials. Adv. Eng. Mater. 2018, 20, 1700781.

15

Yan, J. J.; Lu, Y.; Chen, G. J.; Yang, M.; Gu, Z. Advances in liquid metals for biomedical applications. Chem. Soc. Rev. 2018, 47, 2518–2533.

16

Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C. et al. Gallium-rich Pd-Ga phases as supported liquid metal catalysts. Nat. Chem. 2017, 9, 862–867.

17

Lu, Y.; Hu, Q. Y.; Lin, Y. L.; Pacardo, D. B.; Wang, C.; Sun, W. J.; Ligler, F. S.; Dickey, M. D.; Gu, Z. Transformable liquid-metal nanomedicine. Nat. Commun. 2015, 6, 10066.

18

Hohman, J. N.; Kim, M.; Wadsworth, G. A.; Bednar, H. R.; Jiang, J.; LeThai, M. A.; Weiss, P. S. Directing substrate morphology via self-assembly: Ligand-mediated scission of gallium-indium microspheres to the nanoscale. Nano Lett. 2011, 11, 5104–5110.

19

Chechetka, S. A.; Yu, Y.; Zhen, X.; Pramanik, M.; Pu, K. Y.; Miyako, E. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat. Commun. 2017, 8, 15432.

20

Yamaguchi, A.; Mashima, Y.; Iyoda, T. Reversible size control of liquid- metal nanoparticles under ultrasonication. Angew. Chem. , Int. Ed. 2015, 54, 12809–12813.

21

Ren, L.; Zhuang, J. C.; Casillas, G.; Feng, H. F.; Liu, Y. Q.; Xu, X.; Liu, Y. D.; Chen, J.; Du, Y.; Jiang, L. et al. Nanodroplets for stretchable superconducting circuits. Adv. Funct. Mater. 2016, 26, 8111–8118.

22

Lu, Y.; Lin, Y. L.; Chen, Z. W.; Hu, Q. Y.; Liu, Y.; Yu, S. J.; Gao, W.; Dickey, M. D.; Gu, Z. Enhanced endosomal escape by light-fueled liquid-metal transformer. Nano Lett. 2017, 17, 2138–2145.

23

Lin, Y. L.; Liu, Y.; Genzer, J.; Dickey, M. D. Shape-transformable liquid metal nanoparticles in aqueous solution. Chem. Sci. 2017, 8, 3832–3837.

24

Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited:  Bridging the gap between gold(I)−thiolate complexes and thiolate- protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

25

Sun, W. J.; Hu, Q. Y.; Ji, W. Y.; Wright, G.; Gu, Z. Leveraging physiology for precision drug delivery. Physiol. Rev. 2017, 97, 189–225.

26

Miljevic, B.; Hedayat, F.; Stevanovic, S.; Fairfull-Smith, K. E.; Bottle, S. E.; Ristovski, Z. D. To sonicate or not to sonicate pm filters: Reactive oxygen species generation upon ultrasonic irradiation. Aerosol Sci. Technol. 2014, 48, 1276–1284.

27

Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

28

Li, S. C.; Chu, L. N.; Gong, X. Q.; Diebold, U. Hydrogen bonding controls the dynamics of catechol adsorbed on a TiO2(110) surface. Science 2010, 328, 882–884.

29

Fan, Q. L.; Cheng, K.; Hu, X.; Ma, X. W.; Zhang, R. P.; Yang, M.; Lu, X. M.; Xing, L.; Huang, W.; Gambhir, S. S. et al. Transferring biomarker into molecular probe: Melanin nanoparticle as a naturally active platform for multimodality imaging. J. Am. Chem. Soc. 2014, 136, 15185–15194.

30

Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.

31

Lal, S.; Clare, S. E.; Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008, 41, 1842–1851.

32

Lyu, Y.; Fang, Y.; Miao, Q. Q.; Zhen, X.; Ding, D.; Pu, K. Y. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 2016, 10, 4472–4481.

33

Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H. L.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324–332.

34

Zhang, Y. M.; Hong, H.; Sun, B. Y.; Carter, K.; Qin, Y. R.; Wei, W.; Wang, D. P.; Jeon, M.; Geng, J. M.; Nickles, R. J. et al. Surfactant-stripped naphthalocyanines for multimodal tumor theranostics with upconversion guidance cream. Nanoscale 2017, 9, 3391–3398.

35

Mackey, M. A.; Ali, M. R. K.; Austin, L. A.; Near, R. D.; El-Sayed, M. A. The most effective gold nanorod size for plasmonic photothermal therapy: Theory and in vitro experiments. J. Phys. Chem. B 2014, 118, 1319–1326.

36

Yang, M.; Fan, Q. L.; Zhang, R. P.; Cheng, K.; Yan, J. J.; Pan, D. H.; Ma, X. W.; Lu, A.; Cheng, Z. Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging. Biomaterials 2015, 69, 30–37.

37

Yan, J. J.; Ji, Y.; Zhang, P. J.; Lu, X. M.; Fan, Q. L.; Pan, D. H.; Yang, R. L.; Xu, Y. P.; Wang, L. Z.; Zhang, L. et al. Melanin nanoparticles as an endogenous agent for efficient iron overload therapy. J. Mater. Chem. B 2016, 4, 7233–7240.

38

Hudson, Z. M.; Boott, C. E.; Robinson, M. E.; Rupar, P. A.; Winnik, M. A.; Manners, I. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem. 2014, 6, 893–898.

39

Wang, J.; Zhu, W.; Peng, B.; Chen, Y. M. A facile way to prepare crystalline platelets of block copolymers by crystallization-driven self-assembly. Polymer 2013, 54, 6760–6767.

40

Zhou, Y.; Yan, B.; He, X. H. Controlled synthesis and up/down-conversion luminescence of self-assembled hierarchical architectures of monoclinic AgRE(WO4)2: Ln3+ (RE = Y, La, Gd, Lu; Ln = Eu, Tb, Sm, Dy, Yb/Er, Yb/Tm). J. Mater. Chem. C 2014, 2, 848–855.

41

Rebolledo, A. F.; Bomatí-Miguel, O.; Marco, J. F.; Tartaj, P. A facile synthetic route for the preparation of superparamagnetic iron oxide nanorods and nanorices with tunable surface functionality. Adv. Mater. 2008, 20, 1760–1765.

42

Wang, H.; Brandl, D. W.; Le, F.; Nordlander, P.; Halas, N. J. Nanorice: A hybrid plasmonic nanostructure. Nano Lett. 2006, 6, 827–832.

43

Parasuraman, P. S.; Tsai, H. C.; Imae, T. In-situ hydrothermal synthesis of carbon nanorice using nafion as a template. Carbon 2014, 77, 660–666.

44

Hoshyargar, F.; Crawford, J.; O'Mullane, A. P. Galvanic replacement of the liquid metal Galinstan. J. Am. Chem. Soc. 2017, 139, 1464–1471.

45

Glass, K.; Ito, S.; Wilby, P. R.; Sota, T.; Nakamura, A.; Bowers, C. R.; Vinther, J.; Dutta, S.; Summons, R.; Briggs, D. E. G. et al. Direct chemical evidence for Eumelanin pigment from the Jurassic period. Proc. Natl. Acad. Sci. USA 2012, 109, 10218–10223.

46

Mbonyiryivuze, A.; Mwakikunga, B.; Dhlamini, S. M.; Maaza, M. Fourier transform infrared spectroscopy for sepia melanin. Phys. Mater. Chem. 2015, 3, 25–29.

47

Zangmeister, R. A.; Morris, T. A.; Tarlov, M. J. Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 2013, 29, 8619–8628.

48

Tas, A. C.; Majewski, P. J.; Aldinger, F. Synthesis of gallium oxide hydroxide crystals in aqueous solutions with or without urea and their calcination behavior. J. Am. Ceram. Soc. 2002, 85, 1421–1429.

49

Bronze-Uhle, E. S.; Paulin, J. V.; Piacenti-Silva, M.; Battocchio, C.; Rocco, M. L. M.; de Oliveira Graeff, C. F. Melanin synthesis under oxygen pressure. Polym. Int. 2016, 65, 1339–1346.

50

Rajh, T.; Chen, L. X.; Lukas, K.; Liu, T.; Thurnauer, M. C.; Tiede, D. M. Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. J. Phys. Chem. B 2002, 106, 10543–10552.

51

Huang, C. C.; Yeh, C. S.; Ho, C. J. Laser ablation synthesis of spindle-like gallium oxide hydroxide nanoparticles with the presence of cationic cetyltrimethylammonium bromide. J. Phys. Chem. B 2004, 108, 4940–4945.

52

Rao, W.; Liu, J. Injectable liquid alkali alloy based-tumor thermal ablation therapy. Minim. Invasive Ther. Allied Technol. 2009, 18, 30–35.

53

Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410–10488.

54

Ye, Y. Q.; Wang, C.; Zhang, X. D.; Hu, Q. Y.; Zhang, Y. Q.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L. et al. A melanin-mediated cancer immunotherapy patch. Sci. Immunol. 2017, 2, eaan5692.

55

Zhang, L.; Sheng, D. L.; Wang, D.; Yao, Y. Z.; Yang, K.; Wang, Z. G.; Deng, L. M.; Chen, Y. Bioinspired multifunctional melanin-based nanoliposome for photoacoustic/magnetic resonance imaging-guided efficient photothermal ablation of cancer. Theranostics 2018, 8, 1591–1606.

56

Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.

57

Huang, H. C.; Rege, K.; Heys, J. J. Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods. ACS Nano 2010, 4, 2892–2900.

58

Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

59

Ahmed, M.; Brace, C. L.; Lee, F. T.; Goldberg, S. N. Principles of and advances in percutaneous ablation. Radiology 2011, 258, 351–369.

60

Yu, J. C.; Zhang, Y. Q.; Ye, Y. Q.; DiSanto, R.; Sun, W. J.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA 2015, 112, 8260–8265.

61

Willcock, H.; Lu, A.; Hansell, C. F.; Chapman, E.; Collins, I. R.; O'Reilly, R. K. One-pot synthesis of responsive sulfobetaine nanoparticles by RAFT polymerisation: The effect of branching on the UCST cloud point. Polym. Chem. 2014, 5, 1023–1030.

Nano Research
Pages 1313-1320
Cite this article:
Yan J, Zhang X, Liu Y, et al. Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Research, 2019, 12(6): 1313-1320. https://doi.org/10.1007/s12274-018-2262-y
Topics:
Part of a topical collection:

1185

Views

90

Crossref

N/A

Web of Science

90

Scopus

2

CSCD

Altmetrics

Received: 10 October 2018
Revised: 30 November 2018
Accepted: 03 December 2018
Published: 29 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return