AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selectively patterned TiO2 nanorods as electron transport pathway for high performance perovskite solar cells

Daihong Huh1,§KyoungSuk Oh1,2,§Minjin Kim1,2,§Hak-Jong Choi1,3Dong Suk Kim2( )Heon Lee1( )
Department of Materials Science and Engineering, Korea University, Anam-ro 145, Sungbuk-Gu, Seoul 136-701, Republic of Korea
KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER), UNIST-Gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-851, Republic of Korea
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

§ Daihong Huh, KyungSuk Oh, and Minjin Kim contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Organic-inorganic hybrid perovskite solar cells (PSCs) are attracting tremendous attention for new-generation photovoltaic devices because of their excellent power conversion efficiency and simple fabrication process. One of the various approaches to increase the efficiency of PSCs is to change the material or structure of the carrier transport layer. Here, optically long and electrically short structural concept is proposed to enhance the characteristics of a PSC by employing selectively grown single crystalline TiO2 nanorods. The approach has the merit of increasing the electron-hole separation effectively and enables a thicker active layer to be coated without electrical loss by using TiO2 nanorods as an electron pathway. Moreover, selectively grown TiO2 nanorods increase the optical path of the incident light via scattering effects and enable a smooth coating of the active layer. Nanoimprint lithography and hydrothermal growth were employed to fabricate selectively grown TiO2 nanorod substrates. The fabricated solar cell exhibits an efficiency of 19.86% with a current density, open-circuit voltage, and fill factor of 23.13 mA/cm2, 1.120 V, and 76.69%, respectively. Time-resolved photoluminescence, ultraviolet-visible (UV-Vis) spectroscopy, and the incident photon to current efficiency (IPCE) analysis were conducted to understand the factors responsible for the improvement in characteristics of the fabricated PSCs.

Electronic Supplementary Material

Download File(s)
12274_2018_2263_MOESM1_ESM.pdf (2.1 MB)

References

1

Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F.; Heeger, A. J. Photoinduced electron transfer from a conducting polymer to buckminster-fullerene. Science 1992, 258, 1474-1476.

2

Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; Dusastre, V., Ed.; World Scientific: Hackensack, NJ, 2010; pp 80-84.

3

Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205-213.

4

Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506-514.

5

Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944-948.

6

Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D.; Wudl, F.; Heeger, A. J. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 1999, 286, 945-947.

7

Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-398.

8

Tsai, H.; Nie, W. Y.; Lin, Y. H.; Blancon, J. C.; Tretiak, S.; Even, J.; Gupta, G.; Ajayan, P. M.; Mohite, A. D. Effect of precursor solution aging on the crystallinity and photovoltaic performance of perovskite solar cells. Adv. Energy Mater. 2017, 7, 1602159.

9

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341-344.

10

Cho, K. T.; Paek, S.; Grancini, G.; Roldán-Carmona, C.; Gao, P.; Lee, Y.; Nazeeruddin, M. K. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 2017, 10, 621-627.

11

NREL chart[Online]. https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-07-17-2018.pdf (accessed Jul 8, 2018).

12

Zhou, Y. H.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J. et al. A universal method to produce low-work function electrodes for organic electronics. Science 2012, 336, 327-332.

13

Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A.; Nazeeruddin, M. K. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486-491.

14

You, J. B.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y.; Chang, W. H.; Hong, Z. R.; Chen, H. J.; Zhou, H. P.; Chen, Q. et al. Improved air stability of perovskite solar cells via ex situ solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75-81.

15

Qin, M. C.; Ma, J. J.; Ke, W. J.; Qin, P. L.; Lei, H. W.; Tao, H.; Zheng, X. L.; Xiong, L. B.; Liu, Q.; Chen, Z. L. et al. Perovskite solar cells based on low-temperature processed indium oxide electron selective layers. ACS Appl. Mater. Interfaces 2016, 8, 8460-8466.

16

Choi, J.; Song, S.; Hörantner, M. T.; Snaith, H. J.; Park, T. Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells. ACS Nano 2016, 10, 6029-6036.

17

Kim, H. S.; Lee, J. W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.; Grätzel, M.; Park, N. G. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 2013, 13, 2412-2417.

18

Yu, Y. H.; Li, J. Y.; Geng, D. L.; Wang, J. J.; Zhang, L. S.; Andrew, T. L.; Arnold, M. S.; Wang, X. D. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures. ACS Nano 2015, 9, 564-572.

19

Feng, X. J.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 2008, 8, 3781-3786.

20

Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985-3990.

21

Hendry, E.; Koeber, M.; O'Regan, B.; Bonn, M. Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. Nano Lett. 2006, 6, 755-759.

22

Li, Y. X.; Guo, M.; Zhang, M.; Wang, X. D. Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates. Mater. Res. Bull. 2009, 44, 1232-1237.

23

Nian, J. N.; Teng, H. Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. J. Phys. Chem. B 2006, 110, 4193-4198.

24

Bratton, D.; Yang, D.; Dai, J. Y.; Ober, C. K. Recent progress in high resolution lithography. Polym. Adv. Technol. 2006, 17, 94-103.

25

Tseng, A. A.; Chen, K.; Chen, C. D.; Ma, K. J. Electron beam lithography in nanoscale fabrication: Recent development. IEEE Trans. Electron. Packag. Manuf. 2003, 26, 141-149.

26

Sung, Y. H.; Jung, P. H.; Han, K. H.; Kim, Y. D.; Kim, J. J.; Lee, H. Improved out-coupling efficiency of organic light emitting diodes fabricated on a TiO2 planarization layer with embedded Si oxide nanostructures. Opt. Mater. 2017, 72, 828-832.

27

Ahn, S. H.; Guo, L. J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting. ACS Nano 2009, 3, 2304-2310.

28

Lee, H.; Hong, S.; Yang, K.; Choi, K. Fabrication of 100 nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography. Appl. Phys. Lett. 2006, 88, 143112.

29

Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495-513.

30

Loboda, M. J.; Grove, C. M.; Schneider, R. F. Properties of a-SiOx: H thin films deposited from hydrogen silsesquioxane resins. J. Electrochem. Soc. 1998, 145, 2861-2866.

31

Jacobsen, K. W.; Norskov, J. K.; Puska, M. J. Interatomic interactions in the effective-medium theory. Phys. Rev. B 1987, 35, 7423-7442.

32

Minot, M. J. Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 μ. J. Opt. Soc. Am. 1976, 66, 515-519.

33

Peacock, P. W.; Robertson, J. Band offsets and schottky barrier heights of high dielectric constant oxides. J. Appl. Phys. 2002, 92, 4712-4721.

34

Todorov, T. K.; Tang, J.; Bag, S.; Gunawan, O.; Gokmen, T.; Zhu, Y.; Mitzi, D. B. Beyond 11% efficiency: Characteristics of state-of-the-art Cu2ZnSn(S, Se)4 solar cells. Adv. Energy Mater. 2013, 3, 34-38.

35

Kanevce, A.; Levi, D. H.; Kuciauskas, D. The role of drift, diffusion, and recombination in time-resolved photoluminescence of CdTe solar cells determined through numerical simulation. Prog. Photovolt. Res. Appl. 2014, 22, 1138-1146.

Nano Research
Pages 601-606
Cite this article:
Huh D, Oh K, Kim M, et al. Selectively patterned TiO2 nanorods as electron transport pathway for high performance perovskite solar cells. Nano Research, 2019, 12(3): 601-606. https://doi.org/10.1007/s12274-018-2263-x
Topics:

788

Views

15

Crossref

N/A

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 02 August 2018
Revised: 01 November 2018
Accepted: 04 December 2018
Published: 21 December 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return