Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The Pt-Ni nanoframe catalysts have attracted great interest owing to their unique electronic structure and excellent catalytic performance. However, the stability of the tenuous edges of nanoframe-structures is dissatisfactory and their universal applications in catalytic market beyond electrocatalytic reactions are yet to be tapped and explored. Herein, we developed a new core@shell structured Pt-Ni nanoframe@CeO2 (Pt-Ni NF@CeO2) composite via etching the Ni from inhomogeneous Pt-Ni rhombic dodecahedra (Pt-Ni RD) by cerium(III) acetate hydrate (Ce(OAc)3). In this path, Pt-Ni RD was used as self-sacrificial template, while the Ce(OAc)3 serves as the provider of the Ce3+ source and OH− for the formation of CeO2 shell, etchant of Pt-Ni RD, and the surface modification agent. By this way, the etching of Pt-Ni RD and the formation of the CeO2 shell are simultaneously proceeded to form the final Pt-Ni NF@CeO2 in one step. The obtained Pt-Ni NF@CeO2 exhibits strong interfacial charge transfer interaction between Pt-Ni NF core and CeO2 shell even without reduction treatment, leading to enhanced catalytic activity in the hydrogenation of phenylacetylene. After introduction of trace silver, the Pt-Ni-Ag4.9 NF@CeO2 achieves remarkable catalytic performance for the selective conversion of phenylacetylene to styrene: high conversion (100%), styrene selectivity (86.5%), and good stability. It reveals that encapsulation noble metal nanoframes into metal oxide to form core@shell structured hybrids will indeed enhance their stability and catalytic properties. Particularly, this work expends the application of noble metal nanoframes materials to hydrogenation reactions.
Wang, C. Y.; Zhang, L. H.; Yang, H. Z.; Pan, J. F.; Liu, J. Y.; Dotse, C.; Luan, Y. L.; Gao, R.; Lin, C. K.; Zhang, J. et al. High-indexed Pt3Ni alloy tetrahexahedral nanoframes evolved through preferential CO etching. Nano Lett. 2017, 17, 2204–2210.
Becknell, N.; Son, Y.; Kim, D.; Li, D. G.; Yu, Y.; Niu, Z. Q.; Lei, T.; Sneed, B. T.; More, K. L.; Markovic, N. M. et al. Control of architecture in rhombic dodecahedral Pt-Ni nanoframe electrocatalysts. J. Am. Chem. Soc. 2017, 139, 11678–11681.
Lin, R.; Cai, X.; Zeng, H.; Yu, Z. P. Stability of high-performance Pt-based catalysts for oxygen reduction reactions. Adv. Mater. 2018, 30, 1705332.
Luo, S.P.; Shen, P. K. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 2017, 11, 11946–11953.
Kwon, T.; Hwang, H.; Sa, Y. J.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Cobalt assisted synthesis of IrCu hollow octahedral nanocages as highly active electrocatalysts toward oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1604688.
Kwon, H.; Kabiraz, M. K.; Park, J.; Oh, A.; Baik, H.; Choi, S. I.; Lee, K. Dendrite-embedded platinum-nickel multiframes as highly active and durable electrocatalyst toward the oxygen reduction reaction. Nano Lett. 2018, 18, 2930–2936.
Kwon, T.; Jun, M.; Kim, H. Y.; Oh, A.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Vertex-reinforced PtCuCo ternary nanoframes as efficient and stable electrocatalysts for the oxygen reduction reaction and the methanol oxidation reaction. Adv. Funct. Mater. 2018, 28, 1706440.
Oh, A.; Sa, Y. J.; Hwang, H.; Baik, H.; Kim, J.; Kim, B.; Joo, S. H.; Lee, K. Rational design of Pt-Ni-Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale 2016, 8, 16379–16386.
Wu, Y.; Wang, D. S.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. D. Sophisticated construction of Au islands on Pt-Ni: An ideal trimetallic nanoframe catalyst. J. Am. Chem. Soc. 2014, 136, 11594–11597.
Park, J.; Kabiraz, M. K.; Kwon, H.; Park, S.; Baik, H.; Choi, S. I.; Lee, K. Radially phase segregated PtCu@PtCuNi dendrite@frame nanocatalyst for the oxygen reduction reaction. Acs Nano 2017, 11, 10844–10851.
Li, G. D.; Tang, Z. Y. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995–4011.
Ray, C.; Pal, T. Recent advances of metal-metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J. Mater. Chem. A 2017, 5, 9465–9487.
Zhang, B.; Guo, X. W.; Liang, H. J.; Ge, H. B.; Gu, X. M.; Chen, S.; Yang, H. M.; Qin, Y. Tailoring Pt-Fe2O3 interfaces for selective reductive coupling reaction to synthesize imine. ACS Catal. 2016, 6, 6560–6566.
Liang, H. J.; Zhang, B.; Ge, H. B.; Gu, X. M.; Zhang, S. F.; Qin, Y. Porous TiO2/Pt/TiO2 sandwich catalyst for highly selective semihydrogenation of alkyne to olefin. ACS Catal. 2017, 7, 6567–6572.
Long, Y.; Song, S. Y.; Li, J.; Wu, L. L.; Wang, Q. S.; Liu, Y.; Jin, R. C.; Zhang, H. J. Pt/CeO2@MOF core@shell nanoreactor for selective hydrogenation of furfural via the channel screening effect. ACS Catal. 2018, 8, 8506–8512.
Ta, N.; Liu, J.; Chenna, S.; Crozier, P. A.; Li, Y.; Chen, A. L.; Shen, W. J. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J. Am. Chem. Soc. 2012, 134, 20585–20588.
Mitsudome, T.; Mikami, Y.; Matoba, M.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Design of a silver-cerium dioxide core-shell nanocomposite catalyst for chemoselective reduction reactions. Angew. Chem. , Int. Ed. 2012, 51, 136–139.
Wang, X.; Liu, D. P.; Song, S. Y.; Zhang, H. J. Pt@CeO2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc. 2013, 135, 15864–15872.
Wang, X.; Zhang, Y. B.; Song, S. Y.; Yang, X. G.; Wang, Z.; Jin, R. C.; Zhang, H. J. L-arginine-triggered self-assembly of CeO2 nanosheaths on palladium nanoparticles in water. Angew. Chem. , Int. Ed. 2016, 55, 4542– 4546.
Li, J.; Song, S. Y.; Long, Y.; Wu, L. L.; Wang, X.; Xing, Y.; Jin, R. C.; Liu, X. G.; Zhang, H. J. Investigating the hybrid-structure-effect of CeO2- encapsulated Au nanostructures on the transfer coupling of nitrobenzene. Adv. Mater. 2018, 30, 1704416.
Song, S. Y.; Li, K.; Pan, J.; Wang, F.; Li, J. Q.; Feng, J.; Yao, S.; Ge, X.; Wang, X.; Zhang, H. J. Achieving the trade-off between selectivity and activity in semihydrogenation of alkynes by fabrication of (asymmetrical Pd@Ag core)@(CeO2 shell) nanocatalysts via autoredox reaction. Adv. Mater. 2017, 29, 1605332.
Song, S. Y.; Liu, X. C.; Li, J. Q.; Pan, J.; Wang, F.; Xing, Y.; Wang, X.; Liu, X. G.; Zhang, H. J. Confining the nucleation of Pt to in situ form (Pt- enriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions. Adv. Mater. 2017, 29, 1700495.
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.
Mathurin, L. E.; Tao, J.; Xin, H. L.; Li, J.; Zhu, Y. M.; Chen, J. Y. Dendritic core-frame and frame multimetallic rhombic dodecahedra: A comparison study of composition and structure effects on electrocatalysis of methanol oxidation. ChemNanoMat 2018, 4, 76–87.
Yang, C. W.; Yu, X. J.; Heißler, S.; Weidler, P. G.; Nefedov, A.; Wang, Y. M.; Wöell, C.; Kropp, T.; Paier, J.; Sauer, J. O2 activation on ceria catalysts—The importance of substrate crystallographic orientation. Angew. Chem. , Int. Ed. 2017, 56, 16399–16404.
Yang, C. W.; Yu, X. J.; Heißler, S.; Nefedov, A.; Colussi, S.; Llorca, J.; Trovarelli, A.; Wang, Y. M.; Wöell, C. Surface faceting and reconstruction of ceria nanoparticles. Angew. Chem. , Int. Ed. 2017, 56, 375–379.
Lee, K.; Kang, S. W.; Lee, S. U.; Park, K. H.; Lee, Y. W.; Han, S. W. One-pot synthesis of monodisperse 5 nm Pd-Ni nanoalloys for electrocatalytic ethanol oxidation. ACS Appl. Mater. Interfaces 2012, 4, 4208–4214.
Niu, Z. Q.; Li, Y. D. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 2014, 26, 72–83.
Albani, D.; Capdevila-Cortada, M.; Vilé, G.; Mitchell, S.; Martin, O.; López, N.; Pérez-Ramírez, J. Semihydrogenation of acetylene on indium oxide: Proposed single-ensemble catalysis. Angew. Chem. , Int. Ed. 2017, 56, 10755–10760.
Albani, D.; Shahrokhi, M.; Chen, Z. P.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 2018, 9, 2634.
Crespo-Quesada, M.; Cárdenas-Lizana, F.; Dessimoz, A. L.; Kiwi-Minsker, L. Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal. 2012, 2, 1773–1786.
Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.
Wang, Z. Q.; Yang, L.; Zhang, R.; Li, L.; Cheng, Z. M.; Zhou, Z. M. Selective hydrogenation of phenylacetylene over bimetallic Pd-Cu/Al2O3 and Pd-Zn/Al2O3 catalysts. Catal. Today 2016, 264, 37–43.
Shao, L. D.; Huang, X.; Teschner, D.; Zhang, W. Gold supported on graphene oxide: An active and selective catalyst for phenylacetylene hydrogenations at low temperatures. ACS Catal. 2014, 4, 2369–2373.
Erokhin, A. V.; Lokteva, E. S.; Yermakov, A. Y.; Boukhvalov, D. W.; Maslakov, K. I.; Golubina, E. V.; Uimin, M. A. Phenylacetylene hydrogenation on Fe@C and Ni@C core-shell nanoparticles: About intrinsic activity of graphene-like carbon layer in H2 activation. Carbon 2014, 74, 291–301.
Yu, J. W.; Wang, X. Y.; Yuan, C. Y.; Li, W. Z.; Wang, Y. H.; Zhang, Y. W. Synthesis of ultrathin Ni nanosheets for semihydrogenation of phenylacetylene to styrene under mild conditions. Nanoscale 2018, 10, 6936–6944.
Semba, K.; Fujihara, T.; Xu, T. H.; Terao, J.; Tsuji, Y. Copper-catalyzed highly selective semihydrogenation of non-polar carbon-carbon multiple bonds using a Silane and an alcohol. Adv. Synth. Catal. 2012, 354, 1542– 1550.
Li, C.; Shao, Z. F.; Pang, M.; Williams, C. T.; Zhang, X. F.; Liang, C. H. Carbon nanotubes supported mono- and bimetallic Pt and Ru catalysts for selective hydrogenation of phenylacetylene. Ind. Eng. Chem. Res. 2012, 51, 4934–4941.
Li, C.; Shao, Z. F.; Pang, M.; Williams, C. T.; Liang, C. H. Carbon nanotubes supported Pt catalysts for phenylacetylene hydrogenation: Effects of oxygen containing surface groups on Pt dispersion and catalytic performance. Catal. Today 2012, 186, 69–75.
Xue, Y. J.; Yao, R. H.; Li, J. R.; Wang, G. M.; Wu, P.; Li, X. H. Efficient Pt- FeOx/TiO2@SBA-15 catalysts for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Catal. Sci. Technol. 2017, 7, 6112–6123.
Xie, Z. H.; Yan, B. H.; Kattel, S.; Lee, J. H.; Yao, S. Y.; Wu, Q. Y.; Rui, N.; Gomez, E.; Liu, Z. Y.; Xu, W. Q. et al. Dry reforming of methane over CeO2-supported Pt-Co catalysts with enhanced activity. Appl. Catal. B Environ 2018, 236, 280–293.
Sun, J.; Sun, W.; Du, L.; Du, C.; Gao, Y.; Yin, G. Tailored NbO2 modified Pt/graphene as highly stable electrocatalyst towards oxygen reduction reaction. Fuel Cells 2018, 18, 360–368.
Kiadehi, A. D.; Taghizadeh, M. Evaluation of a micro-channel reactor for steam reforming of ethylene glycol: A comparative study of catalytic activity of Pt or/and Ni supported γ-alumina catalysts. Int. J. Hydrogen Energy 2018, 43, 4826–4838.
Singha, R. K.; Shukla, A.; Yadav, A.; Sasaki, T.; Sandupatla, A.; Deo, G.; Bal, R. Pt-CeO2 nanoporous spheres-an excellent catalyst for partial oxidation of methane: Effect of the bimodal pore structure. Catal. Sci. Technol. 2017, 7, 4720–4735.
Lee, J.; Ryou, Y. S.; Chan, X. J.; Kim, T. J.; Kim, D. H. How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: The origin of improved thermal stability of Pt/CeO2 compared to CeO2. J. Phys. Chem. C 2016, 120, 25870–25879.
Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J. G.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem. , Int. Ed. 2016, 55, 8319–8323.
Vilé, G.; Pérez-Ramírez, J. Beyond the use of modifiers in selective alkyne hydrogenation: Silver and gold nanocatalysts in flow mode for sustainable alkene production. Nanoscale 2014, 6, 13476–13482.
Mitsudome, T.; Urayama, T.; Yamazaki, K.; Maehara, Y.; Yamasaki, J.; Gohara, K.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Design of core-Pd/shell-Ag nanocomposite catalyst for selective semihydrogenation of alkynes. ACS Catal. 2016, 6, 666–670.