AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines

Xuanjue TongXing CaoTong HanWeng-Chon CheongRui LinZheng ChenDingsheng WangChen ChenQing Peng( )Yadong Li( )
Department of Chemistry,Tsinghua University,Beijing,100084,China;
Show Author Information

Graphical Abstract

Abstract

Photocatalytic oxidation has been widely employed in organic synthesis, by virtue of the green, mild and simple reaction conditions as well as high selectivity. Introducing oxygen vacancies (OVs) with proper concentrations into the photocatalysts has been proven as an effective strategy to boost the catalytic performances. However, the currently used treatment method under high temperature at reducing atmosphere inevitably introduces a large number of OVs at the interior of the catalyst and serving as the recombination centers of carriers. To address this issue, here we develop a facile solvothermal process to prepare ultrathin BiOBr nanosheets with rich surface OVs. This method effectively decreases the bulk of the material and the ratio of interior OVs, rendering most of the OVs exposed on the surfaces which act as exposed catalytic sites and enhance the separation of carriers, therefore significantly elevates the photocatalytic performances. For the photo-oxidation reaction of secondary amines, under the conditions of visible light, ambient temperature and atmosphere, the BiOBr nanosheets featuring rich surface OVs deliver a doubled conversion compared to those with low OV concentrations, and a high selectivity of 99%, a high stability as the performance shows no reduction after 5 times of circular reaction.

References

1

Cao, X.; Chen, Z.; Lin, R.; Cheong, W. C.; Liu, S. J.; Zhang, J.; Peng, Q.; Chen, C.; Han, T.; Tong, X. J. et al. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene. Nat. Catal. 2018, 1, 704-710.

2

Li, H.; Qin, F.; Yang, Z. P.; Cui, X. M.; Wang, J. F.; Zhang, L. Z. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 2017, 139, 3513-3521.

3

Lin, R.; Wan, J. W.; Xiong, Y.; Wu, K. L.; Cheong, W. C.; Zhou, G.; Wang, D. S.; Peng, Q.; Chen, C.; Li, Y. D. Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: Insight into the crystal facet effect in photocatalysis. J. Am. Chem. Soc. 2018, 140, 9078-9082.

4

Wu, Y. H.; Yuan, B.; Li, M. R.; Zhang, W. H.; Liu, Y.; Li, C. Well-defined BiOCl colloidal ultrathin nanosheets: Synthesis, characterization, and application in photocatalytic aerobic oxidation of secondary amines. Chem. Sci. 2015, 6, 1873-1878.

5

Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. M.; Ju, H. X.; Liu, D. B.; Lin, Y.; Ye, W.; Wang, C. M.; Xu, Q. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928-8935.

6

Yu, Z. J.; Chen, Z.; Chen, Y. G.; Peng, Q.; Lin, R.; Wang, Y.; Shen, R. A.; Cao, X.; Zhuang, Z. B.; Li, Y. D. Photocatalytic hydrogenation of nitroarenes using Cu1.94S-Zn0.23Cd0.77S heteronanorods. Nano Res. 2018, 11, 3730-3738.

7

Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735-758.

8

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746-750.

9

Liu, Y. W.; Xiao, C.; Li, Z.; Xie, Y. Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy Mater. 2016, 6, 1600436.

10

Xiong, J.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 2018, 28, 1801983.

11

Li, H.; Li, J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. Angew. Chem., Int. Ed. 2018, 57, 122-138.

12

Wang, H.; Yong, D. Y.; Chen, S. C.; Jiang, S. L.; Zhang, X. D.; Shao, W.; Zhang, Q.; Yan, W. S.; Pan, B. C.; Xie, Y. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J. Am. Chem. Soc. 2018, 140, 1760-1766.

13

Ma, Z. Y.; Li, P. H.; Ye, L. Q.; Zhou, Y.; Su, F. Y.; Ding, C. H.; Xie, H. Q.; Bai, Y.; Wong, P. K. Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO2 conversion. J. Mater. Chem. A 2017, 5, 24995-25004.

14

Kong, M.; Li, Y. Z.; Chen, X.; Tian, T. T.; Fang, P. F.; Zheng, F.; Zhao, X. J. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 2011, 133, 16414-16417.

15

Lv, Y. H.; Yao, W. Q.; Zong, R. L.; Zhu, Y. F. Fabrication of wide-range- visible photocatalyst Bi2WO6−x nanoplates via surface oxygen vacancies. Sci. Rep. 2016, 6, 19347.

16

Chen, D. M.; Wang, Z. H.; Ren, T. Z.; Ding, H.; Yao, W. Q.; Zong, R. L.; Zhu, Y. F. Influence of defects on the photocatalytic activity of ZnO. J. Phys. Chem. C 2014, 118, 15300-15307.

17

Wu, S. J.; Xiong, J. W.; Sun, J. G.; Hood, Z. D.; Zeng, W.; Yang, Z. Z.; Gu, L.; Zhang, X. X.; Yang, S. Z. Hydroxyl-dependent evolution of oxygen vacancies enables the regeneration of BiOCl photocatalyst. ACS Appl. Mater. Interfaces 2017, 9, 16620-16626.

18

Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821-831.

19

Mao, C. L.; Cheng, H. G.; Tian, H.; Li, H.; Xiao, W. J.; Xu, H.; Zhao, J. C.; Zhang, L. Z. Visible light driven selective oxidation of amines to imines with BiOCl: Does oxygen vacancy concentration matter? Appl. Catal. B Environ. 2018, 228, 87-96.

20

Cui, D. D.; Wang, L.; Xu, K.; Ren, L.; Wang, L.; Yu, Y. X.; Du, Y.; Hao, W. C. Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. J. Mater. Chem. A 2018, 6, 2193-2199.

21

Ji, M. X.; Chen, R.; Di, J.; Liu, Y. L.; Li, K.; Chen, Z. G.; Xia, J. X.; Li, H. M. Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to boost the photocatalytic activity. J. Colloid Interface Sci. 2019, 533, 612-620.

22

Hu, J.; Weng, S. X.; Zheng, Z. Y.; Pei, Z. X.; Huang, M. L.; Liu, P. Solvents mediated-synthesis of BiOI photocatalysts with tunable morphologies and their visible-light driven photocatalytic performances in removing of arsenic from water. J. Hazard. Mater. 2014, 264, 293-302.

23

Guan, M. L.; Xiao, C.; Zhang, J.; Fan, S. J.; An, R.; Cheng, Q. M.; Xie, J. F.; Zhou, M.; Ye, B. J.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135, 10411-10417.

24

Wu, X. Y.; Zhang, K. K.; Zhang, G. K.; Yin, S. Facile preparation of BiOX (X = Cl, Br, I) nanoparticles and up-conversion phosphors/BiOBr composites for efficient degradation of NO gas: Oxygen vacancy effect and near infrared light responsive mechanism. Chem. Eng. J. 2017, 325, 59-70.

25

Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024-4030.

26

Jin, X. L.; Lv, C. D.; Zhou, X.; Zhang, C. M.; Meng, Q. Q.; Liu, Y.; Chen, G. Molecular adsorption promotes carrier migration: Key step for molecular oxygen activation of defective Bi4O5I2. Appl. Catal. B Environ. 2018, 226, 53-60.

27

Wu, J.; Li, X. D.; Shi, W.; Ling, P. Q.; Sun, Y. F.; Jiao, X. C.; Gao, S.; Liang, L.; Xu, J. Q.; Yan, W. S. et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem., Int. Ed. 2018, 57, 8719-8723.

28

Kong, X. Y.; Tan, W. L.; Ng, B. J.; Chai, S. P.; Mohamed, A. R. Harnessing vis-NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets. Nano Res. 2017, 10, 1720-1731.

29

Wu, S. J.; Sun, W. W.; Sun, J. G.; Hood, Z. D.; Yang, S. Z.; Sun, L. D.; Kent, P. R. C.; Chisholm, M. F. Surface reorganization leads to enhanced photocatalytic activity in defective BiOCl. Chem. Mater. 2018, 30, 5128-5136.

30

Yu, S. X.; Zhang, Y. H.; Dong, F.; Li, M.; Zhang, T. R.; Huang, H. W. Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: Triple-functional role for efficient visible-light photocatalytic redox performance. Appl. Catal. B Environ. 2018, 226, 441-450.

31

Han, Q.; Wang, Y. L.; Sun, M.; Sun, C. Y.; Zhu, S. S.; Wang, X. L.; Su, Z. M. Metal-organic frameworks with organogold(Ⅲ) complexes for photocatalytic amine oxidation with enhanced efficiency and selectivity. Chem. -Eur. J. 2018, 24, 15089-15095.

32

Jin, J. J.; Yang, C. J.; Zhang, B. G.; Deng, K. J. Selective oxidation of amines using O2 catalyzed by cobalt thioporphyrazine under visible light. J. Catal. 2018, 361, 33-39.

33

Han, A. J.; Zhang, H. W.; Chuah, G. K.; Jaenicke, S. Influence of the halide and exposed facets on the visible-light photoactivity of bismuth oxyhalides for selective aerobic oxidation of primary amines. Appl. Catal. B Environ. 2017, 219, 269-275.

34

Bi, W. T.; Ye, C. M.; Xiao, C.; Tong, W.; Zhang, X. D.; Shao, W.; Xie, Y. Spatial location engineering of oxygen vacancies for optimized photocatalytic H2 evolution activity. Small 2014, 10, 2820-2825.

Nano Research
Pages 1625-1630
Cite this article:
Tong X, Cao X, Han T, et al. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Research, 2019, 12(7): 1625-1630. https://doi.org/10.1007/s12274-018-2404-x
Topics:

789

Views

104

Crossref

N/A

Web of Science

107

Scopus

10

CSCD

Altmetrics

Received: 17 February 2019
Revised: 24 March 2019
Accepted: 07 April 2019
Published: 22 April 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return