Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
DNA tetrahedron nanostructure (DTN) is one of the simplest DNA nanostructures and has been successfully applied for biosensing, imaging, and treatment of cancer. To facilitate its biomedical applications and potential clinical translation, fundamental understanding of DTN's transportation among major organs in living organisms becomes increasingly important. Here, we describe the efficient renal clearance of DTN in healthy mice by using positron emission tomography (PET) imaging. The kidney elimination of DTN was later applied for renal function evaluation in murine models of unilateral ureteral obstruction (UUO). We further established a mathematical program of DTN to validate its changes of transportation pattern in healthy and UUO mice. We believe the establishment of pharmacokinetic profiles and mathematical model of DTN may provide insight for future optimization of DNA nanostructures for biomedical applications.
Gopinath, A.; Miyazono, E.; Faraon, A.; Rothemund, P. W. K. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature 2016, 535, 401-405.
Li, J.; Green, A. A.; Yan, H.; Fan, C. H. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 2017, 9, 1056-1067.
Lin, M. H.; Wang, J. J.; Zhou, G. B.; Wang, J. B.; Wu, N.; Lu, J. X.; Gao, J. M.; Chen, X. Q.; Shi, J. Y.; Zuo, X. L. et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem., Int. Ed. 2015, 54, 2151-2155.
Zhang, H. L.; Chao, J.; Pan, D.; Liu, H. J.; Qiang, Y.; Liu, K.; Cui, C. J.; Chen, J. H.; Huang, Q.; Hu, J. et al. DNA origami-based shape IDs for single-molecule nanomechanical genotyping. Nat. Commun. 2017, 8, 14738.
Jiang, D. W.; Sun, Y. H.; Li, J.; Li, Q.; Lv, M.; Zhu, B.; Tian, T.; Cheng, D. F.; Xia, J. Y.; Zhang, L. et al. Multiple-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging. ACS Appl. Mater. Interfaces 2016, 8, 4378-4384.
Li, J. B.; Jiang, D. W.; Bao, B. L.; He, Y. L.; Liu, L.; Wang, X. M. Radiolabeling of DNA bipyramid and preliminary biological evaluation in mice. Bioconjugate Chem. 2016, 27, 905-910.
Jiang, D. W.; England, C. G.; Cai, W. B. DNA nanomaterials for preclinical imaging and drug delivery. J. Control. Release 2016, 239, 27-38.
Li, S. P.; Jiang, Q.; Liu, S. L.; Zhang, Y. L.; Tian, Y. H.; Song, C.; Wang, J.; Zou, Y. G.; Anderson, G. J.; Han, J. Y. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018, 36, 258-264.
Jiang, D. W.; Ge, Z. L.; Im, H. J.; England, C. G.; Ni, D. L.; Hou, J. J.; Zhang, L. H.; Kutyreff, C. J.; Yan, Y. J.; Liu, Y. et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2018, 2, 865-877.
Goodman, R. P.; Berry, R. M.; Turberfield, A. J. The single-step synthesis of a DNA tetrahedron. Chem. Commun. (Camb) 2004, 1372-1373, DOI: 1039/b402293a.
Goodman, R. P.; Schaap, I. A. T.; Tardin, C. F.; Erben, C. M.; Berry, R. M.; Schmidt, C. F.; Turberfield, A. J. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 2005, 310, 1661-1665.
Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. H. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 2011, 5, 8783-8789.
Lee, H.; Lytton-Jean, A. K. R.; Chen, Y.; Love, K. T.; Park, A. I.; Karagiannis, E. D.; Sehgal, A.; Querbes, W.; Zurenko, C. S.; Jayaraman, M. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 2012, 7, 389-393.
Kim, K. R.; Lee, Y. D.; Lee, T.; Kim, B. S.; Kim, S.; Ahn, D. R. Sentinel lymph node imaging by a fluorescently labeled DNA tetrahedron. Biomaterials 2013, 34, 5226-5235.
Choi, H. S.; Liu, W. H.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Itty Ipe, B.; Bawendi, M. G.; Frangioni, J. V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165-1170.
Du, B. J.; Jiang, X. Y.; Das, A.; Zhou, Q. H.; Yu, M. X.; Jin, R. C.; Zheng, J. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 2017, 12, 1096-1102.
Gupta, S. K.; Lewis, G.; Rogers, K. M.; Attia, J.; Rostron, K.; O'Neill, L.; Skillen, A.; Viswanathan, S. Quantitative 99mTc DTPA renal transplant scintigraphic parameters: Assessment of interobserver agreement and correlation with graft pathologies. Am. J. Nucl. Med. Mol. Imaging 2014, 4, 213-224.
Hofman, M.; Binns, D.; Johnston, V.; Siva, S.; Thompson, M.; Eu, P.; Collins, M.; Hicks, R. J. 68Ga-EDTA PET/CT imaging and plasma clearance for glomerular filtration rate quantification: Comparison to conventional 51Cr-EDTA. J. Nucl. Med. 2015, 56, 405-409.
Chawla, L. S.; Eggers, P. W.; Star, R. A.; Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. New Engl. J. Med. 2014, 371, 58-66.
Lewington, A. J. P.; Cerdá, J.; Mehta, R. L. Raising awareness of acute kidney injury: A global perspective of a silent killer. Kidney Int. 2013, 84, 457-467.
Bellomo, R.; Kellum, J. A.; Ronco, C. Acute kidney injury. Lancet 2012, 380, 756-766.
Ruggiero, A.; Villa, C. H.; Bander, E.; Rey, D. A.; Bergkvist, M.; Batt, C. A.; Manova-Todorova, K.; Deen, W. M.; Scheinberg, D. A.; McDevitt, M. R. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci. USA 2010, 107, 12369-12374.
Liu, J. B.; Yu, M. X.; Ning, X. H.; Zhou, C.; Yang, S. Y.; Zheng, J. PEGylation and zwitterionization: Pros and cons in the renal clearance and tumor targeting of Near-IR-Emitting gold nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 12572-12576.
Phillips, E. H.; Peñate-Medina, O.; Zanzonico, P. B.; Carvajal, R. D.; Mohan, P.; Ye, Y. P.; Humm, J.; Gönen, M.; Kalaigian, H.; Schöder, H. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 2014, 6, 260ra149.
Zhou, M.; Li, J. J.; Liang, S.; Sood, A. K.; Liang, D.; Li, C. CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy. ACS Nano 2015, 9, 7085-7096.
Yu, M. X.; Zhou, J. C.; Du, B. J.; Ning, X. H.; Authement, C.; Gandee, L.; Kapur, P.; Hsieh, J. T.; Zheng, J. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles. Angew. Chem. , Int. Ed. 2016, 55, 2787-2791.
Miao, Q. Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H. W.; Liu, X. G.; Jokerst, J. V.; Pu, K. Y. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 2017, 35, 1102-1110.
Jiang, Y. Y.; Pu, K. Y. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc. Chem. Res. 2018, 51, 1840-1849.
Phelps, M. E. Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. USA 2000, 97, 9226-9233.
Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2002, 2, 683-693.
Ide, T.; Sasaki, T.; Maeda, K.; Higuchi, S.; Sugiyama, Y.; Ieiri, I. Quantitative population pharmacokinetic analysis of pravastatin using an enterohepatic circulation model combined with pharmacogenomic Information on SLCO1B1 and ABCC2 polymorphisms. J. Clin. Pharmacol. 2009, 49, 1309-1317.