AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Composition optimized trimetallic PtNiRu dendritic nanostructures as versatile and active electrocatalysts for alcohol oxidation

Yan Lu1,§Wei Wang1,2,3,§Xiaowei Chen1Yuhui Zhang1Yanchen Han1Yong Cheng4Xue-Jiao Chen1Kai Liu1Yuanyuan Wang1Qiaobao Zhang4Shuifen Xie1,3( )
College of Materials Science and Engineering,Huaqiao University,Xiamen,361021,China;
Department of Physics,Xiamen University,Xiamen,361005,China;
Shenzhen Research Institute of Xiamen University,Shenzhen,518000,China;
Department of Materials Science and Engineering,Xiamen University,Xiamen,361005,China;

§Yan Lu and Wei Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Platinum-based nanocrystals are the most effective electrocatalysts for accelerating the chemical transformations on the anode in direct alcohol fuel cells. To facilitate practical applications and overcome the drawbacks of diverse alcohols, it is significant to develop electrocatalysts with high activities and a wide fuel flexibility. Here, we demonstrate a practicable solution method for fabricating composition tunable trimetallic PtNiRu dendritic nanostructures (DNSs) which can serve as versatile and active catalysts for electrooxidation of a variety of liquid alcohols. A series of trimetallic DNSs with tunable Pt/Ni/Ru atomic ratios were successfully synthesized by simply adjusting the feeding of precursors. Detailed electrochemical test indicates that, among other compositions, the Pt66Ni27Ru7 DNSs present much superior electroactivity in catalyzing electrooxidation of liquid alcohols in acidic mediums. Specifically, the mass activity and specific activity on the Pt66Ni27Ru7 DNSs, for electrooxidation of methanol, ethanol, and ethylene glycol, are 4.57 and 4.34 times, 3.55 and 3.42 times, and 2.37 and 2.28 times that of the commercial Pt black, respectively. X-ray photoelectron spectroscopy and CO stripping studies reveal the adsorption of CO on these PtNiRu DNSs is much weaker than on pure Pt. Meanwhile, the surface Ru sites can provide neighbouring -OH groups to facilitate the oxidation and removal of the adsorbed intermediates (-CO) on the surface Pt sites, effectively improving the CO tolerance of the catalysts. The PtNiRu DNSs also show effectively boosted capacity for breaking the C-C bond in C2-alcohols, showing great potential for fuel-flexible fuel cell applications.

Electronic Supplementary Material

Download File(s)
12274_2019_2273_MOESM1_ESM.pdf (9.9 MB)

References

1

Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.

2

Liu, M. M.; Zhang, R. Z.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117-5160.

3

Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747-4765.

4

Wang, Y.; Zou, S. Z.; Cai, W. B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysts 2015, 5, 1507-1534.

5

Serov, A.; Kwak, C. Recent achievements in direct ethylene glycol fuel cells (DEGFC). Appl. Catal. B: Environ. 2010, 97, 1-12.

6

Zhu, C. Z.; Guo, S. J.; Dong, S. J. PdM (M=Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules. Adv. Mater. 2012, 24, 2326-2331.

7

Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 2736-2753.

8

Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chem. Sci. 2012, 3, 1925-1929.

9

Ma, S. Y.; Li, H. H.; Hu, B. C.; Cheng, X.; Fu, Q. Q.; Yu, S. H. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc. 2017, 139, 5890-5895.

10

Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773-2776.

11

Yan, Y. C.; Shan, H.; Li, G.; Xiao, F.; Jiang, Y. Y.; Yan, Y. Y.; Jin, C. H.; Zhang, H.; Wu, J. B.; Yang, D. R. Epitaxial growth of multimetallic Pd@PtM (M=Ni, Rh, Ru) core-shell nanoplates realized by in situ-produced CO from interfacial catalytic reactions. Nano Lett. 2016, 16, 7999-8004.

12

Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142-1147.

13

Chen, Q. L.; Yang, Y. N.; Cao, Z. M.; Kuang, Q.; Du, G. F.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Excavated cubic platinum-tin alloy nanocrystals constructed from ultrathin nanosheets with enhanced electrocatalytic activity. Angew. Chem., Int. Ed. 2016, 55, 9021-9025.

14

Shang, C. S.; Guo, Y. X.; Wang, E. K. Facile fabrication of PdRuPt nanowire networks with tunable compositions as efficient methanol electrooxidation catalysts. Nano Res. 2018, 11, 4348-4355.

15

Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.

16

Hong, W.; Shang, C. S.; Wang, J.; Wang, E. K. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2015, 8, 2910-2915.

17

Feng, Y. G.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. 3D platinum-lead nanowire networks as highly efficient ethylene glycol oxidation electrocatalysts. Small 2016, 12, 4464-4470.

18

Erini, N.; Beermann, V.; Gocyla, M.; Gliech, M.; Heggen, M.; Dunin-Borkowski, R. E.; Strasser, P. The effect of surface site ensembles on the activity and selectivity of ethanol electrooxidation by octahedral PtNiRh nanoparticles. Angew. Chem., Int. Ed. 2017, 56, 6533-6538.

19

Liu, L.; Lin, X. X.; Zou, S. Y.; Wang, A. J.; Chen, J. R.; Feng, J. J. One-pot wet-chemical synthesis of PtPd@Pt nanocrystals supported on reduced graphene oxide with highly electrocatalytic performance for ethylene glycol oxidation. Electrochim. Acta 2016, 187, 576-583.

20

Wang, Y. Y.; Wang, W.; Xue, F.; Cheng, Y.; Liu, K.; Zhang, Q. B.; Liu, M. C.; Xie, S. F. One-pot synthesis of Pd@Pt3Ni core-shell nanobranches with ultrathin Pt3Ni{111} skins for efficient ethanol electrooxidation. Chem. Commun. 2018, 54, 5185-5188.

21

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE): Washington, DC, 2015.

22

Hsieh, Y. C.; Zhang, Y.; Su, D.; Volkov, V.; Si, R.; Wu, L. J.; Zhu, Y. M.; An, W.; Liu, P.; He, P. et al. Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nat. Commun. 2013, 4, 2466.

23

Lamy, C.; Lima, A.; LeRhun, V.; Delime, F.; Coutanceau, C.; Léger, J. M. Recent advances in the development of direct alcohol fuel cells (DAFC). J. Power Sources 2002, 105, 283-296.

24

Wang, P.; Yin, S. B.; Wen, Y.; Tian, Z. Q.; Wang, N. Z.; Key, J. L.; Wang, S. B.; Shen, P. K. Ternary Pt9RhFex nanoscale alloys as highly efficient catalysts with enhanced activity and excellent CO-poisoning tolerance for ethanol oxidation. ACS Appl. Mater. Interfaces 2017, 9, 9584-9591.

25

Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012, 7, 448-466.

26

Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056-3078.

27

Wu, Z. H.; Yang, S. L.; Wu, W. Shape control of inorganic nanoparticles from solution. Nanoscale 2016, 8, 1237-1259.

28

Kleijn, S. E. F.; Lai, S. C. S.; Koper, M. T. M.; Unwin, P. R. Electrochemistry of nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 3558-3586.

29

Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414-10472.

30

Zhang, J.; Fang, J. Y. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J. Am. Chem. Soc. 2009, 131, 18543-18547.

31

Chen, L. X.; Zhu, J.; Xuan, C. J.; Xiao, W. P.; Xia, K. D.; Xia, W. W.; Lai, C. L.; Xin, H. L.; Wang, D. L. Effects of crystal phase and composition on structurally ordered Pt-Co-Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction. J. Mater. Chem. A 2018, 6, 5848-5855.

32

Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934-13937.

33

Guo, Z. G.; Dai, X. P.; Yang, Y.; Zhang, Z. C.; Zhang, X.; Mi, S. Q.; Xu, K.; Li, Y. F. Highly stable and active PtNiFe dandelion-like alloys for methanol electrooxidation. J. Mater. Chem. A 2013, 1, 13252-13260.

34

Teng, X. W.; Maksimuk, S.; Frommer, S.; Yang, H. Three-dimensional PtRu nanostructures. Chem. Mater. 2007, 19, 36-41.

35

Wang, F.; Li, C. H.; Sun, L. D.; Xu, C. H.; Wang, J. F.; Yu, J. C.; Yan, C. H. Porous single-crystalline palladium nanoparticles with high catalytic activities. Angew. Chem., Int. Ed. 2012, 51, 4872-4876.

36

Qu, X. M.; Cao, Z. M.; Zhang, B. W.; Tian, X. C.; Zhu, F. C.; Zhang, Z. C.; Jiang, Y. X.; Sun, S. G. One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid. Chem. Commun. 2016, 52, 4493-4496.

37

Wang, W. Y.; Wang, D. S.; Liu, X. W.; Peng, Q.; Li, Y. D. Pt-Ni nanodendrites with high hydrogenation activity. Chem. Commun. 2013, 49, 2903-2905.

38

Li, X.; Chen, Q.; Wang, M. Y.; Cao, Z. M.; Zhan, Q.; He, T. O.; Kuang, Q.; Yin, Y. D.; Jin, M. S. Coordination effect assisted synthesis of ultrathin Pt layers on second metal nanocrystals as efficient oxygen reduction electrocatalysts. J. Mater. Chem. A 2016, 4, 13033-13039.

39

Wang, W.; Cao, Z. M.; Liu, K.; Chen, J. Y.; Wang, Y. Y.; Xie, S. F. Ligand-assisted, one-pot synthesis of Rh-on-Cu nanoscale sea urchins with high-density interfaces for boosting CO oxidation. Nano Lett. 2017, 17, 7613-7619.

40

Liu, H. X.; Tian, N.; Brandon, M. P.; Zhou, Z. Y.; Lin, J. L.; Hardacre, C.; Lin, W. F.; Sun, S. G. Tetrahexahedral Pt nanocrystal catalysts decorated with Ru adatoms and their enhanced activity in methanol electrooxidation. ACS Catal. 2012, 2, 708-715.

41

Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H.; He, D.; Liang, H. W.; Wu, L.; Yu, S. H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem., Int. Ed. 2013, 52, 7472-7476.

42

Kua, J.; Goddard Ⅲ, W. A. Oxidation of methanol on 2nd and 3rd row group Ⅷ transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells. J. Am. Chem. Soc. 1999, 121, 10928-10941.

43

Greeley, J.; Mavrikakis, M. Competitive paths for methanol decomposition on Pt(111). J. Am. Chem. Soc. 2004, 126, 3910-3919.

44

Sakong, S.; Groß, A. The importance of the electrochemical environment in the electro-oxidation of methanol on Pt(111). ACS Catal. 2016, 6, 5575-5586.

45

Zhuang, L.; Jin, J.; Abruña, H. D. Direct observation of electrocatalytic synergy. J. Am. Chem. Soc. 2007, 129, 11033-11035.

46

Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120, 10240-10246.

47

Xiao, M. L.; Feng, L. G.; Zhu, J. B.; Liu, C. P.; Xing, W. Rapid synthesis of a PtRu nano-sponge with different surface compositions and performance evaluation for methanol electrooxidation. Nanoscale 2015, 7, 9467-9471.

48

Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564-569.

49

Colle, V. D.; Giz, M. J.; Tremiliosi-Filho, G. Spontaneous deposition of Ru on Pt (100): Morphological and electrochemical studies. Preliminary results of ethanol oxidation at Pt(100)/Ru. J. Braz. Chem. Soc. 2003, 14, 601-609.

50

Sulaiman, J. E.; Zhu, S. Q.; Xing, Z. L.; Chang, Q. W.; Shao, M. H. Pt-Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction. ACS Catal. 2017, 7, 5134-5141.

51

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

52

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1234.

53

Lu, S. Q.; Li, H. M.; Sun, J. Y.; Zhuang, Z. B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res. 2018, 11, 2058-2068.

54

Electronegativities of the elements (data page)[Online]. https://en.wikipedia.org/wiki/Electronegativities_of_the_elements_(data_page) (accessed Oct 7, 2018).

55

Hirschl, R.; Delbecq, F.; Sautet, P.; Hafner, J. Pt80Fe20 surface from first principles: Electronic structure and adsorption of CO and atomic H. Phys. Rev. B 2002, 66, 155438.

56

Blyholder, G. Molecular orbital view of chemisorbed carbon monoxide. J. Phys. Chem. 1964, 68, 2772-2777.

57

Delbecq, F. General trends in the electronic properties of alloys of transition metals: A semi-empirical study of CO adsorption. Surf. Sci. 1997, 389, L1131-L1139.

58

Rao, L.; Jiang, Y. X.; Zhang, B. W.; Cai, Y. R.; Sun, S. G. High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation. Phys. Chem. Chem. Phys. 2014, 16, 13662-13671.

59

Yuan, Q.; Zhou, Z. Y.; Zhuang, J.; Wang, X. Seed displacement, epitaxial synthesis of Rh/Pt bimetallic ultrathin nanowires for highly selective oxidizing ethanol to CO2. Chem. Mater. 2010, 22, 2395-2402.

60

Gootzen, J. F. E.; Visscher, W.; van Veen, J. A. R. Characterization of ethanol and 1, 2-ethanediol adsorbates on platinized platinum with fourier transform infrared spectroscopy and differential electrochemical mass spectrometry. Langmuir 1996, 12, 5076-5082.

61

de Bruijn, F. A.; Dam, V. A. T.; Janssen, G. J. M. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cells 2008, 8, 3-22.

62

Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302-1305.

63

Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439-2450.

Nano Research
Pages 651-657
Cite this article:
Lu Y, Wang W, Chen X, et al. Composition optimized trimetallic PtNiRu dendritic nanostructures as versatile and active electrocatalysts for alcohol oxidation. Nano Research, 2019, 12(3): 651-657. https://doi.org/10.1007/s12274-019-2273-3
Topics:

711

Views

53

Crossref

N/A

Web of Science

58

Scopus

10

CSCD

Altmetrics

Received: 17 October 2018
Revised: 19 November 2018
Accepted: 17 December 2018
Published: 03 January 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return