AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures

Jingkai Qin1,2,3Hang Yan1,3Gang Qiu2Mengwei Si2Peng Miao4Yuqin Duan2Wenzhu Shao3Liang Zhen1,3Chengyan Xu1,3( )Peide D Ye2( )
State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin,150001,China;
School of Electrical and Computer Engineering,Purdue University,West Lafayette, IN,47907,USA;
School of Materials Science and Engineering,Harbin Institute of Technology,Harbin,150001,China;
School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin,150001,China;
Show Author Information

Graphical Abstract

Abstract

The combination of mixed-dimensional semiconducting materials can provide additional freedom to construct integrated nanoscale electronic and optoelectronic devices with diverse functionalities. In this work, we report a high-performance dual-channel phototransistor based on one-dimensional (1D)/two-dimensional (2D) trigonal selenium (t-Se)/ReS2 heterostructures grown by chemical vapor deposition. The injection and separation efficiency of photogenerated electron–hole pairs can be greatly improved due to the high-quality interfacial contact between t-Se nanobelts and ReS2 films. Compared with bare ReS2 film devices, the dual-channel phototransistor based on t-Se/ReS2 heterostructure exhibits considerable enhancement with the responsivity (R) and detectivity (D*) up to 98 A·W–1 and 6 × 1010 Jones at 400 nm illumination with an intensity of 1.7 mW·cm-2, respectively. Besides, the response time can also be reduced by three times of magnitude to less than 50 ms due to the type-Ⅱ band alignment at the interface. This study opens up a promising avenue for high-performance photodetectors by constructing mixed-dimensional heterostructures.

Electronic Supplementary Material

Download File(s)
12274_2019_2275_MOESM1_ESM.pdf (4 MB)

References

1

Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 2015, 45, 1-27.

2

Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170-181.

3

Gao, S. Y.; Yang, L.; Spataru, C. D. Interlayer coupling and gate-tunable excitons in transition metal dichalcogenide heterostructures. Nano Lett. 2017, 17, 7809-7813.

4

Jin, C. H.; Kim, J.; Suh, J.; Shi, Z. W.; Chen, B.; Fan, X.; Kam, M.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Interlayer electron-phonon coupling in WSe2/hBN heterostructures. Nat. Phys. 2017, 13, 127-131.

5

Li, Y.; Qin, J. K.; Xu, C. Y.; Cao, J.; Sun, Z. Y.; Ma, L. P.; Hu, P. A.; Ren, W. C.; Zhen, L. Electric field tunable interlayer relaxation process and interlayer coupling in WSe2/graphene heterostructures. Adv. Funct. Mater. 2016, 26, 4319-4328.

6

Li, Y.; Xu, C. Y.; Qin, J. K.; Feng, W.; Wang, J. Y.; Zhang, S. Q.; Ma, L. P.; Cao, J.; Hu, P. A.; Ren, W. C. et al. Tuning the excitonic states in MoS2/graphene van der Waals heterostructures via electrochemical gating. Adv. Funct. Mater. 2016, 26, 293-302.

7

Kufer, D.; Konstantatos, G. Photo-FETs: Phototransistors enabled by 2D and 0D nanomaterials. ACS Photonics 2016, 3, 2197-2210.

8

Ma, C.; Shi, Y. M.; Hu, W. J.; Chiu, M. H.; Liu, Z. X.; Bera, A.; Li, F.; Wang, H.; Li, L. J.; Wu, T. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 2016, 28, 3683-3689.

9

Ra, H. -S.; Kwak, D. -H.; Lee, J. -S. A hybrid MoS2 nanosheet-CdSe nanocrystal phototransistor with a fast photoresponse. Nanoscale 2016, 8, 17223-17230.

10

Schornbaum, J.; Winter, B.; Schieβl, S. P.; Gannott, F.; Katsukis, G.; Guldi, D. M.; Spiecker, E.; Zaumseil, J. Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 2014, 24, 5798-5806.

11

Wen, Y.; Yin, L.; He, P.; Wang, Z. X.; Zhang, X. K.; Wang, Q. S.; Shifa, T. A.; Xu, K.; Wang, F. M.; Zhan, X. Y. et al. Integrated high-performance infrared phototransistor arrays composed of nonlayered PbS-MoS2 heterostructures with edge contacts. Nano Lett. 2016, 16, 6437-6444.

12

Zheng, W.; Feng, W.; Zhang, X.; Chen, X. S.; Liu, G. B.; Qiu, Y. F.; Hasan, T.; Tan, P. H.; Hu, P. A. Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv. Funct. Mater. 2016, 26, 2648-2654.

13

Qin, J. -K.; Ren, D. -D.; Shao, W. -Z.; Li, Y.; Miao, P.; Sun, Z. -Y.; Hu, P. A.; Zhen, L.; Xu, C. -Y. Photoresponse enhancement in monolayer ReS2 phototransistor decorated with CdSe-CdS-ZnS quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 39456-39463.

14

Li, Z. W.; Ye, R. Q.; Feng, R.; Kang, Y. M.; Zhu, X.; Tour, J. M.; Fang, Z. Y. Graphene quantum dots doping of MoS2 monolayers. Adv. Mater. 2015, 27, 5235-5240.

15

Oakes, L.; Carter, R.; Hanken, T.; Cohn, A. P.; Share, K.; Schmidt, B.; Pint, C. L. Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nat. Commun. 2016, 7, 11796.

16

Ansari, S. A.; Cho, M. H. Simple and large scale construction of MoS2-gC3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications. Sci. Rep. 2017, 7, 43055.

17

Wu, L. M.; Guo, J.; Wang, Q. K.; Lu, S. B.; Dai, X. Y.; Xiang, Y. J.; Fan, D. Y. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B: Chem. 2017, 249, 542-548.

18

Li, M. Y.; Chen, C. -H.; Shi, Y. M.; Li, L. -J. Heterostructures based on two-dimensional layered materials and their potential applications. Mate. Today 2016, 19, 322-335.

19

Pecora, E. F.; Sun, H. D.; Dal Negro, L.; Moustakas, T. D. Deep-UV optical gain in AlGaN-based graded-index separate confinement heterostructure. Opt. Mater. Express 2015, 5, 809-817.

20

Kasap, S.; Frey, J. B.; Belev, G.; Tousignant, O.; Mani, H.; Laperriere, L.; Reznik, A.; Rowlands, J. A. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Phys. Status Solidi B 2009, 246, 1794-1805.

21

Qin, J. K.; Qiu, G.; Jian, J.; Zhou, H.; Yang, L. M.; Charnas, A.; Zemlyanov, D. Y.; Xu, C. -Y.; Xu, X. F.; Wu, W. Z. et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications. ACS Nano 2017, 11, 10222-10229.

22

Wang, K.; Chen, F.; Belev, G.; Kasap, S.; Karim, K. S. Lateral metal-semiconductor-metal photodetectors based on amorphous selenium. Appl. Phys. Lett. 2009, 95, 013505.

23

Mukherjee, P.; Konar, S.; Gupta, B. C. Structural and electrical properties of selenium nanotubes. Phys. Lett. A 2016, 380, 238-241.

24

Sridharan, K.; Ollakkan, M. S.; Philip, R.; Park, T. J. Non-hydrothermal synthesis and optical limiting properties of one-dimensional Se/C, Te/C and Se-Te/C core-shell nanostructures. Carbon 2013, 63, 263-273.

25

Wang, R. P.; Su, X. Q.; Bulla, D.; Wang, T.; Gai, X.; Yang, Z. Y.; Madden, S.; Luther-Davies, B. Identifying the best chalcogenide glass compositions for the application in mid-infrared waveguides. In Proceedings Volume 9444, International Seminar on Photonics, Optics, and Its Applications, Bali, Indonesia, 2015.

26

Yang, W.; Hu, K.; Teng, F.; Weng, J. H.; Zhang, Y.; Fang, X. S. High-performance silicon-compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched type Ⅱ Se/n-Si heterojunctions. Nano Lett. 2018, 18, 4697-4703.

27

Gao, X. Y.; Gao, T.; Zhang, L. D. Solution-solid growth of α-monoclinic selenium nanowires at room temperature. J Mater. Chem. Mater. 2003, 13, 6-8.

28

Luo, L. B.; Jie, J. S.; Chen, Z. H.; Zhang, X. J.; Fan, X.; Yuan, G. D.; He, Z. B.; Zhang, W. F.; Zhang, W. J.; Lee, S. T. Photoconductive properties of selenium nanowire photodetectors. J. Nanosci. Nanotechnol. 2009, 9, 6292-6298.

29

Liu, E. F.; Long, M. S.; Zeng, J. W.; Luo, W.; Wang, Y. J.; Pan, Y. M.; Zhou, W.; Wang, B. G.; Hu, W. D.; Ni, Z. H. et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater. 2016, 26, 1938-1944.

30

Ghoshal, D.; Yoshimura, A.; Gupta, T.; House, A.; Basu, S.; Chen, Y. W.; Wang, T. M.; Yang, Y.; Shou, W. J.; Hachtel, J. A. et al. Theoretical and experimental insight into the mechanism for spontaneous vertical growth of ReS2 nanosheets. Adv. Funct. Mater. 2018, 28, 1801286.

31

Cui, F. F.; Wang, C.; Li, X. B.; Wang, G.; Liu, K. Q.; Yang, Z.; Feng, Q. L.; Liang, X.; Zhang, Z. Y.; Liu, S. Z. et al. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater. 2016, 28, 5019-5024.

32

Li, X. B.; Cui, F. F.; Feng, Q. L.; Wang, G.; Xu, X. S.; Wu, J. X.; Mao, N. N.; Liang, X.; Zhang, Z. Y.; Zhang, J. et al. Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 2016, 8, 18956-18962.

33

Qin, J. K.; Qiu, G.; He, W.; Jian, J.; Si, M. -W.; Duan, Y. -Q.; Charnas, A.; Zemlyanov, D. Y.; Wang, H. -Y.; Shao, W. -Z. et al. Epitaxial growth of 1D atomic chain based se nanoplates on monolayer ReS2 for high-performance photodetectors. Adv. Funct. Mater. 2018, 28, 1806254.

34

Li, Y. T.; Huang, L.; Li, B.; Wang, X. T.; Zhou, Z. Q.; Li, J. B.; Wei, Z. M. Co-nucleus 1D/2D heterostructures with Bi2S3 nanowire and MoS2 monolayer: One-step growth and defect-induced formation mechanism. ACS Nano 2016, 10, 8938-8946.

35

Miwa, J. A.; Dendzik, M.; Grønborg, S. S.; Bianchi, M.; Lauritsen, J. V.; Hofmann, P.; Ulstrup, S. Van der Waals epitaxy of two-dimensional MoS2-graphene heterostructures in ultrahigh vacuum. ACS Nano 2015, 9, 6502-6510.

36

Zhou, X.; Gan, L.; Tian, W. M.; Zhang, Q.; Jin, S. Y.; Li, H. Q.; Bando, Y.; Golberg, D.; Zhai, T. Y. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 2015, 27, 8035-8041.

37

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210-215.

38

Suh, J.; Park, T. E.; Lin, D. Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976-6982.

39

Joshi, S. S.; Lokhande, C. D. Fabrication of isotype (p-p) selenium-polyaniline heterojunction diode by electrochemical method. Appl. Surf. Sci. 2006, 252, 8539-8543.

40

Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv. Mater. 2015, 27, 176-180.

41

Liu, Y. Y.; Wu, W. Z.; Goddard, W. A., Ⅲ. Tellurium: Fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 2018, 140, 550-553.

42

Ren, L.; Zhang, H. Z.; Tan, P. H.; Chen, Y. F.; Zhang, Z. S.; Chang, Y. Q.; Xu, J.; Yang, F. H.; Yu, D. P. Hexagonal selenium nanowires synthesized via vapor-phase growth. J. Phys. Chem. B 2004, 108, 4627-4630.

43

Liu, H. M.; Xu, B.; Liu, J. M.; Yin, J.; Miao, F.; Duan, C. -G.; Wan, X. G. Highly efficient and ultrastable visible-light photocatalytic water splitting over ReS2. Phys. Chem. Chem. Phys. 2016, 18, 14222-14227.

44

Perini, C. A. R.; Barker, A, J.; Sala, M.; Petrozza, A.; Caironi, M. High speed solution-processed hybrid perovskite photodetectors with low dark current enabled by a low temperature metal oxide interlayer. Semicond. Sci. Technol. 2018, 33, 094004.

45

Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. J. Mater. Chem. C 2016, 4, 7831-7840.

46

Wang, Q. S.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z. X.; He, J. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497-7505.

Nano Research
Pages 669-674
Cite this article:
Qin J, Yan H, Qiu G, et al. Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures. Nano Research, 2019, 12(3): 669-674. https://doi.org/10.1007/s12274-019-2275-1
Topics:

832

Views

37

Crossref

N/A

Web of Science

36

Scopus

5

CSCD

Altmetrics

Received: 25 October 2018
Revised: 04 December 2018
Accepted: 20 December 2018
Published: 03 January 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return