AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes

Aihua Jin1,2,§Mi-Ju Kim1,2,§Kug-Seung Lee3Seung-Ho Yu1,2,( )Yung-Eun Sung1,2( )
Center for Nanoparticle Research,Institute for Basic Science (IBS),Seoul,08826,Republic of Korea;
School of Chemical and Biological Engineering,Seoul National University,Seoul,08826,Republic of Korea;
Beamline Department,Pohang Accelerator Laboratory (PAL),Pohang,790-784,Republic of Korea;

§Aihua Jin and Mi-Ju Kim contributed equally to this work.

Present address: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA

Show Author Information

Graphical Abstract

Abstract

Iron sulfides have been considered as one of the most promising candidates for sodium ion battery anode materials due to their high theoretical capacity and low cost. In this work, spindle-like Fe7S8 with nitrogen-doped carbon (Fe7S8/N-C) nanohybrids are successfully synthesized via a solvothermal method by sulfidation iron-based metal organic framework (FeMOF). As sodium ion battery anodes, Fe7S8/N-C nanohybrids exhibit high reversible capacity of 450.8 mAh·g-1 at 200 mA·g-1, and 406.7 mAh·g-1 at 500 mA·g-1 even after 500 cycles. They also show excellent rate properties and delivering the capacity of 327.8 mAh·g-1 at a very high current density of 3.2 A·g-1. These outstanding electrochemical performances can be attributed to the unique structure of Fe7S8/N-C nanohybrids. The nanoscale dimension in their size can be beneficial for facile ion and electron transports. Furthermore, the stable nitrogen doped carbon frameworks can also improve electrical conductivity and relieve the problems related to volume expansion. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy analyses have been performed to study reactions occurred in spindle-like Fe7S8/N-C nanohybrid electrode at both bulk and surface.

Electronic Supplementary Material

Download File(s)
12274_2019_2278_MOESM1_ESM.pdf (2.3 MB)

References

1

Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364-5457.

2

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243-3262.

3

Yu, S. H.; Lee, S. H.; Lee, D. J.; Sung, Y. E.; Hyeon, T. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 2016, 12, 2146-2172.

4

Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529-3614.

5

Peters, J.; Buchholz, D.; Passerini, S.; Weil, M. Life cycle assessment of sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1744-1751.

6

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636-11682.

7

Huang, Y. Y.; Zheng, Y. H.; Li, X.; Adams, F.; Luo, W.; Huang, Y. H.; Hu, L. B. Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 2018, 3, 1604-1612.

8

Kim, M. K.; Yu, S. H.; Jin, A. H.; Kim, J.; Ko, I. H.; Lee, K. S.; Mun, J.; Sung, Y. E. Bismuth oxide as a high capacity anode material for sodium-ion batteries. Chem. Commun. 2016, 52, 11775-11778.

9

Quan, B.; Jin, A. H.; Yu, S. H.; Kang, S. M.; Jeong, J.; Abruñ;a, H. D.; Jin, L. Y.; Piao, Y. Z.; Sung, Y. E. Solvothermal-derived S-doped graphene as an anode material for sodium-ion batteries. Adv. Sci. 2018, 5, 1700880.

10

Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710-721.

11

Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067-2081.

12

Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.

13

Kim, H.; Hong, J.; Park, Y. U.; Kim, J.; Hwang, I.; Kang, K. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Funct. Mater. 2015, 25, 534-541.

14

Jache, B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169-10173.

15

Xiao, Y.; Lee, S. H.; Sun, Y. K. The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 2017, 7, 1601329.

16

Hu, Z.; Liu, Q. N.; Chou, S. L.; Dou, S. X. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 2017, 29, 1700606.

17

Liu, Y. P.; He, X. Y.; Hanlon, D.; Harvey, A.; Coleman, J. N.; Li, Y. G. Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 2016, 10, 8821-8828.

18

Choi, S. H.; Kang, Y. C. Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res. 2015, 8, 1595-1603.

19

Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854-3859.

20

Peng, S. J.; Han, X. P.; Li, L. L.; Zhu, Z. Q.; Cheng, F. Y.; Srinivansan, M.; Adams, S.; Ramakrishna, S. Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 2016, 12, 1359-1368.

21

Cho, J. S.; Park, J. S.; Kang, Y. C. Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res. 2017, 10, 897-907.

22

Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Shin, J.; Hu, Z.; Chou, S. L.; Chen, J.; Kang, Y. M. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 12822-12826.

23

Douglas, A.; Carter, R.; Oakes, L.; Share, K.; Cohn, A. P.; Pint, C. L. Ultrafine iron pyrite (FeS2) nanocrystals improve sodium-sulfur and lithium-sulfur conversion reactions for efficient batteries. ACS Nano 2015, 9, 11156-11165.

24

Walter, M.; Zünd, T.; Kovalenko, M. V. Pyrite (FeS2) Nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 2015, 7, 9158-9163.

25

Wei, X.; Li, W. H.; Shi, J. A.; Gu, L.; Yu, Y. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 2015, 7, 27804-27809.

26

Shi, L. D.; Yu, J. L.; Liu, H. C.; Zhao, Y.; Xin, H. L.; Lin, Y. M.; Lin, C. D.; Li, C. H.; Zhu, C. Z. Uniform core-shell nanobiscuits of Fe7S8@C for lithium-ion and sodium-ion batteries with excellent performance. J. Mater. Chem. A 2018, 6, 7967-7976.

27

Xiao, Y.; Hwang, J. Y.; Belharouak, I.; Sun, Y. K. Na storage capability investigation of a carbon nanotube-encapsulated Fe1-x S composite. ACS Energy Lett. 2017, 2, 364-372.

28

Wu, Z. G.; Li, J. T.; Zhong, Y. J.; Liu, J.; Wang, K.; Guo, X. D.; Huang, L.; Zhong, B. H.; Sun, S. G. Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. J. Alloys Compd. 2016, 688, 790-797.

29

Li, Q. D.; Wei, Q. L.; Zuo, W. B.; Huang, L.; Luo, W.; An, Q. Y.; Pelenovich, V. O.; Mai, L. Q.; Zhang, Q. J. Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries. Chem. Sci. 2017, 8, 160-164.

30

Choi, M. J.; Kim, J.; Yoo, J. K.; Yim, S.; Jeon, J.; Jung, Y. S. Extremely small pyrrhotite Fe7S8 nanocrystals with simultaneous carbon-encapsulation for high-performance Na-ion batteries. Small 2018, 14, 1702816.

31

Huang, Z. F.; Song, J. J.; Li, K.; Tahir, M.; Wang, Y. T.; Pan, L.; Wang, L.; Zhang, X. W.; Zou, J. J. Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 1359-1365.

32

Pham, M. H.; Vuong, G. T.; Vu, A. T.; Do, T. O. Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir 2011, 27, 15261-15267.

33

Tan, Y. Z.; Wong, K. W.; Zhang, Z. L.; Ng, K. M. In situ synthesis of iron sulfide embedded porous carbon hollow spheres for sodium ion batteries. Nanoscale 2017, 9, 19408-19414.

34

Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660-12668.

35

Surblé, S.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Férey, G. A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun. 2006, 284-286.

36

Wang, Y.; Alsmeyer, D. C.; McCreery, R. L. Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 1990, 2, 557-563.

37

Shimodaira, N.; Masui, A. Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys. 2002, 92, 902-909.

38

Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527-1535.

39

Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088-3095.

40

Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441-2449.

41

Chen, S. C.; Kang, Z. X.; Zhang, X. D.; Xie, J. F.; Wang, H.; Shao, W.; Zheng, X. S.; Yan, W. S.; Pan, B. C.; Xie, Y. Highly active Fe sites in ultrathin pyrrhotite Fe7S8 nanosheets realizing efficient electro-catalytic oxygen evolution. ACS Cent. Sci. 2017, 3, 1221-1227.

42

Pratt, A. R.; Muir, I. J.; Nesbitt, H. W. X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochim. Cosmochim. Acta 1994, 58, 827-841.

43

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361-365.

44

Zhou, J. G.; Wang, J.; Sun, C. L.; Maley, J. M.; Sammynaiken, R.; Sham, T. K.; Pong, W. F. Nano-scale chemical imaging of a single sheet of reduced graphene oxide. J. Mater. Chem. 2011, 21, 14622-14630.

45

Ehlert, C.; Unger, W. E. S.; Saalfrank, P. C K-edge NEXAFS spectra of graphene with physical and chemical defects: A study based on density functional theory. Phys. Chem. Chem. Phys. 2014, 16, 14083-14095.

46

Hou, Z. F.; Wang, X. L.; Ikeda, T.; Terakura, K.; Oshima, M.; Kakimoto, M. A. Electronic structure of N-doped graphene with native point defects. Phys. Rev. B 2013, 87, 165401.

47

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937-6941.

48

Zhu, Y. Q.; Sun, W. M.; Luo, J.; Chen, W. X.; Cao, T.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Zhang, M. L.; Han, Y. H. et al. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun. 2018, 9, 3861.

49

Kitajou, A.; Yamaguchi, J.; Hara, S.; Okada, S. Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries. J. Power Sources 2014, 247, 391-395.

50

Muthiah, A.; Baikie, T.; Shukla, S.; Ball, S.; Copley, M.; Hyde, T. I.; Du, Y. H.; Sankar, G.; Aravindan, V.; Srinivasan, M. Ex situ XAS investigation of effect of binders on electrochemical performance of Li2Fe(SO4)2 cathode. J. Mater. Chem. A 2017, 5, 19963-19971.

51

Bodenes, L.; Darwiche, A.; Monconduit, L.; Martinez, H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J. Power Sources 2015, 273, 14-24.

52

Komaba, S.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Ito, A.; Ohsawa, Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 2011, 3, 4165-4168.

53

Ji, L. W.; Gu, M.; Shao, Y. Y.; Li, X. L.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z. M.; Xiao, J.; Wang, C. M. et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv. Mater. 2014, 26, 2901-2908.

54

Song, J. H.; Xiao, B. W.; Lin, Y. H.; Xu, K.; Li, X. L. Interphases in sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1703082.

55

Muñoz-Márquez, M. A.; Zarrabeitia, M.; Castillo-Martínez, E.; Eguía-Barrio, A.; Rojo, T.; Casas-Cabanas, M. Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis. ACS Appl. Mater. Interfaces 2015, 7, 7801-7808.

56

Vogt, L. O.; El Kazzi, M.; Jämstorp Berg, E.; Pérez Villar, S.; Novák, P.; Villevieille, C. Understanding the interaction of the carbonates and binder in Na-ion batteries: A combined bulk and surface study. Chem. Mater. 2015, 27, 1210-1216.

57

Jaumann, T.; Balach, J.; Klose, M.; Oswald, S.; Langklotz, U.; Michaelis, A.; Eckert, J.; Giebeler, L. SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: The role of electrode preparation, FEC addition and binders. Phys. Chem. Chem. Phys. 2015, 17, 24956-24967.

58

Oltean, V. A.; Philippe, B.; Renault, S.; Duarte, R. F.; Rensmo, H.; Brandell, D. Investigating the interfacial chemistry of organic electrodes in Li-and Na-ion batteries. Chem. Mater. 2016, 28, 8742-8751.

Nano Research
Pages 695-700
Cite this article:
Jin A, Kim M-J, Lee K-S, et al. Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes. Nano Research, 2019, 12(3): 695-700. https://doi.org/10.1007/s12274-019-2278-y
Topics:

863

Views

55

Crossref

N/A

Web of Science

56

Scopus

5

CSCD

Altmetrics

Received: 16 October 2018
Revised: 18 December 2018
Accepted: 21 December 2018
Published: 10 January 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return