Graphical Abstract

Laser-activated perfluorocarbon nanodroplets are an emerging class of phase-change, dual-contrast agents that can be utilized in ultrasound and photoacoustic imaging. Through the ability to differentiate subpopulations of nanodroplets via laser activation at different wavelengths of near-infrared light, optically-triggered color-coded perfluorocarbon nanodroplets present themselves as an attractive tool for multiplexed ultrasound and photoacoustic imaging. In particular, laser-activated droplets can be used to provide quantitative spatiotemporal information regarding distinct biological targets, allowing for their potential use in a wide range of diagnostic and therapeutic applications. In the work presented, laser-activated color-coded perfluorocarbon nanodroplets are synthesized to selectively respond to laser irradiation at corresponding wavelengths. The dynamic ultrasound and photoacoustic signals produced by laser-activated perfluorocarbon nanodroplets are evaluated in situ prior to implementation in a murine model. In vivo, these particles are used to distinguish unique particle trafficking mechanisms and are shown to provide ultrasound and photoacoustic contrast for up to 72 hours within lymphatics. Overall, the conducted studies show that laser-activated color-coded perfluorocarbon nanodroplets are a promising agent for multiplexed ultrasound and photoacoustic imaging.
Bauer, K. R.; Brown, M.; Cress, R. D.; Parise, C. A.; Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype. Cancer 2007, 109, 1721-1728.
Osborne, C. K.; Yochmowitz, M. G.; Knight, W. A.; McGuire, W. L. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 1980, 46, 2884-2888.
La Thangue, N. B.; Kerr, D. J. Predictive biomarkers: A paradigm shift towards personalized cancer medicine. Nat. Rev. Clin. Oncol. 2011, 8, 587-596.
Heinzmann, K.; Carter, L. M.; Lewis, J. S.; Aboagye, E. O. Multiplexed imaging for diagnosis and therapy. Nat. Biomed. Eng. 2017, 1, 697-713.
Vendrell, M.; Maiti, K. K.; Dhaliwal, K.; Chang, Y. T. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 2013, 31, 249-257.
Ueda, S.; Saeki, T.; Osaki, A.; Yamane, T.; Kuji, I. Bevacizumab induces acute hypoxia and cancer progression in patients with refractory breast cancer: Multimodal functional imaging and multiplex cytokine analysis. Clin. Cancer Res. 2017, 23, 5769-5778.
James, M. L.; Gambhir, S. S. A molecular imaging primer: Modalities, imaging agents, and applications. Physiol. Rev. 2012, 92, 897-965.
Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat. Commun. 2012, 3, 618.
Rapoport, N. Drug-loaded perfluorocarbon nanodroplets for ultrasound-mediated drug delivery. In Therapeutic Ultrasound. Escoffre, J. M.; Bouakaz, A., Eds.; Springer: Cham, 2016; pp 221-241.
Hannah, A. S.; Luke, G. P.; Emelianov, S. Y. Blinking phase-change nanocapsules enable background-free ultrasound imaging. Theranostics 2016, 6, 1866-1876.
Luke, G. P.; Hannah, A. S.; Emelianov, S. Y. Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets. Nano Lett. 2016, 16, 2556-2559.
Santiesteban, D. Y.; Dumani, D. S.; Profili, D.; Emelianov, S. Y. Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ ultrasound imaging agents. Nano Lett. 2017, 17, 5984-5989.
Sheeran, P. S.; Luois, S.; Dayton, P. A.; Matsunaga, T. O. Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound. Langmuir 2011, 27, 10412-10420.
Rapoport, N.; Nam, K. H.; Gupta, R.; Gao, Z. G.; Mohan, P.; Payne, A.; Todd, N.; Liu, X.; Kim, T.; Shea, J. et al. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J. Control. Release 2011, 153, 4-15.
Ji, G. J.; Yang, J. H.; Chen, J. H. Preparation of novel curcumin-loaded multifunctional nanodroplets for combining ultrasonic development and targeted chemotherapy. Int. J. Pharm. 2014, 466, 314-320.
Kumar, S.; Aaron, J.; Sokolov, K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 2008, 3, 314.
Hannah, A.; Luke, G.; Wilson, K.; Homan, K.; Emelianov, S. Indocyanine green-loaded photoacoustic nanodroplets: Dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano 2013, 8, 250-259.
Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2002, 2, 683-693.
Coates, A. S.; Winer, E. P.; Goldhirsch, A.; Gelber, R. D.; Gnant, M.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H. J.; Members, P.; André, F. et al. Tailoring therapies-Improving the management of early breast cancer: St gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann. Oncol. 2015, 26, 1533-1546.
Chollet, P.; Amat, S.; Cure, H.; de Latour, M.; Le Bouedec, G.; Mouret-Reynier, M. A.; Ferriere, J. P.; Achard, J. L.; Dauplat, J.; Penault-Llorca, F. et al. Prognostic significance of a complete pathological response after induction chemotherapy in operable breast cancer. Br. J. Cancer 2002, 86, 1041-1046.
Moghimi, S. M.; Hunter, A. C.; Andresen, T. L. Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 481-503.
Li, D. S.; Yoon, S. J.; Pelivanov, I.; Frenz, M.; O'Donnell, M.; Pozzo, L. D. Polypyrrole-coated perfluorocarbon nanoemulsions as a sono-photoacoustic contrast agent. Nano Lett. 2017, 17, 6184-6194.
Yoon, H.; Yarmoska, S. K.; Hannah, A. S.; Yoon, C.; Hallam, K. A.; Emelianov, S. Y. Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets. Med. Phys. 2017, 44, 3444-3449.
Marshalek, J. P.; Sheeran, P. S.; Ingram, P.; Dayton, P. A.; Witte, R. S.; Matsunaga, T. O. Intracellular delivery and ultrasonic activation of folate receptor-targeted phase-change contrast agents in breast cancer cells in vitro. J. Control. Release 2016, 243, 69-77.
Song, X. J.; Feng, L. Z.; Liang, C.; Yang, K.; Liu, Z. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 2016, 16, 6145-6153.
Song, G. S.; Ji, C. H.; Liang, C.; Song, X. J.; Yi, X.; Dong, Z. L.; Yang, K.; Liu, Z. TaOX decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy. Biomaterials 2017, 112, 257-263.
Albertini, J. J.; Lyman, G. H.; Cox, C.; Yeatman, T.; Balducci, L.; Ku, N. N.; Shivers, S.; Berman, C.; Wells, K.; Rapaport, D. et al. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 1996, 276, 1818-1822.
Krag, D. N.; Weaver, D. L.; Alex, J. C.; Fairbank, J. T. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg. Oncol. 1993, 2, 335-340.
Thomas, S. N.; Vokali, E.; Lund, A. W.; Hubbell, J. A.; Swartz, M. A. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 2014, 35, 814-824.
Leleux, J.; Atalis, A.; Roy, K. Engineering immunity: Modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. J. Control. Release 2015, 219, 610-621.
Kowala, M. C.; Schoefl, G. I. The popliteal lymph node of the mouse: Internal architecture, vascular distribution and lymphatic supply. J. Anat. 1986, 148, 25-46.
Rohner, N. A.; Thomas, S. N. Flexible macromolecule versus rigid particle retention in the injected skin and accumulation in draining lymph nodes are differentially influenced by hydrodynamic size. ACS Biomater. Sci. Eng. 2017, 3, 153-159.
Manolova, V.; Flace, A.; Bauer, M.; Schwarz, K.; Saudan, P.; Bachmann, M. F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38, 1404-1413.
Reddy, S. T.; Rehor, A.; Schmoekel, H. G.; Hubbell, J. A.; Swartz, M. A. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release 2006, 112, 26-34.
Kushwah, R.; Hu, J. Complexity of dendritic cell subsets and their function in the host immune system. Immunology 2011, 133, 409-419.
Liang, R. J.; Xie, J.; Li, J.; Wang, K.; Liu, L. P.; Gao, Y. J.; Hussain, M.; Shen, G. X.; Zhu, J. T.; Tao, J. Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response. Biomaterials 2017, 149, 41-50.