AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Glutathione-capped quantum dots for plasma membrane labeling and membrane potential imaging

Guangcun Chen1,2( )Yejun Zhang1,2Zhao Peng1,2Dehua Huang1,2Chunyan Li1,2Qiangbin Wang1,2,3( )
CAS Key Laboratory of Nano-Bio Interface,Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences,Suzhou,215123,China;
School of Nano Technology and Nano Bionics,University of Science and Technology of China,Hefei,230026,China;
College of Materials Sciences and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing,100049,China;
Show Author Information

Graphical Abstract

Abstract

The plasma membrane of cells is a crucial biological membrane that involved in a variety of cellular processes including cell signaling transduction through membrane electrical activity. Recently, monitoring membrane electrical activity using fluorescence imaging has attracted numerous attentions for its potential applications in evaluating how the nervous system works. However, the development of ideal fluorescent voltage-sensitive probes with both high membrane labeling efficiency and voltage sensitivity is still retain a big challenge. Herein, glutathione- capped CdSe@ZnS quantum dots (CdSe@ZnS-GSH QDs) with a size of 2.5 nm and an emission peak at 520 nm are synthesized using a facile ligand exchange method for plasma membrane labeling and membrane potential imaging. The as-synthesized CdSe@ZnS-GSH QDs can effectively label cell membrane at neutral pH within 30 min and exhibit excellent optical stability in continuous imaging for up to 60 min. With the test concentration up to 200 nM, CdSe@ZnS-GSH QDs show high biocompatibility to cells and do not affect cell proliferation, disturb cell membrane integrity or cause apoptosis and necrosis of cells. Then, a two-component voltage sensor strategy based on fluorescence resonance energy transfer (FRET) between CdSe@ZnS-GSH QDs and the dipicrylamine (DPA) is successfully developed to monitor the membrane potential by the fluorescence of CdSe@ZnS-GSH QDs. This study offers a facile strategy for labeling plasma membrane and monitoring the membrane potential of cells and will hold great potential in the research of signaling within intact neuronal circuits.

Electronic Supplementary Material

Download File(s)
12274_2019_2283_MOESM1_ESM.pdf (1.6 MB)

References

1

Keller, B. U.; Hedrich, R.; Raschke, K. Voltage-dependent anion channels in the plasma membrane of guard cells. Nature 1989, 341, 450–453.

2

Steyer, J. A.; Almers, W. A real-time view of life within 100 nm of the plasma membrane. Nat. Rev. Mol. Cell. Biol. 2001, 2, 268–275.

3

Anitei, M.; Hoflack, B. Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nat. Cell Biol. 2012, 14, 11–19.

4

Sunshine, H.; Iruela-Arispe, M. L. Membrane lipids and cell signaling. Curr. Opin. Lipidol. 2017, 28, 408–413.

5

Green, S. H. Neurotrophic signaling by membrane electrical activity in spiral ganglion neurons. In Cell and Molecular Biology of the Ear. Lim, D. J.; Springer: Boston, 2000; pp 165–182.

6

Shu, Y. S.; Hasenstaub, A.; Duque, A.; Yu, Y. G.; McCormick, D. A. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 2006, 441, 761–765.

7

Yamashita, T.; Pala, A.; Pedrido, L.; Kremer, Y.; Welker, E.; Petersen, C. C. H. Membrane potential dynamics of neocortical projection neurons driving target-specific signals. Neuron 2013, 80, 1477–1490.

8

Gong, Y. Y.; Huang, C.; Li, J. Z.; Grewe, B. F.; Zhang, Y. P.; Eismann, S.; Schnitzer, M. J. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 2015, 350, 1361–1366.

9

Knöpfel, T.; Gallero-Salas, Y.; Song, C. C. Genetically encoded voltage indicators for large scale cortical imaging come of age. Curr. Opin. Chem. Biol. 2015, 27, 75–83.

10

Vogt, N. Voltage sensors: Challenging, but with potential. Nat. Methods 2015, 12, 921–924.

11

Gradinaru, V.; Flytzanis, N. C. Fluorescent boost for voltage sensors. Nature 2016, 529, 469–470.

12

Efros, A. L.; Delehanty, J. B.; Huston, A. L.; Medintz, I. L.; Barbic, M.; Harris, T. D. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat. Nanotechnol. 2018, 13, 278–288.

13

Chen, T. W.; Wardill, T. J.; Sun, Y.; Pulver, S. R.; Renninger, S. L.; Baohan, A.; Schreiter, E. R.; Kerr, R. A.; Orger, M. B.; Jayaraman, V. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013, 499, 295–300.

14

St-Pierre, F.; Marshall, J. D.; Yang, Y.; Gong, Y. Y.; Schnitzer, M. J.; Lin, M. Z. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 2014, 17, 884–889.

15

St-Pierre, F.; Chavarha, M.; Lin, M. Z. Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators. Curr. Opin. Chem. Biol. 2015, 27, 31–38.

16

Yang, H. H.; St-Pierre, F. Genetically encoded voltage indicators: Opportunities and challenges. J. Neurosci. 2016, 36, 9977–9989.

17

Bradley, J.; Luo, R.; Otis, T. S.; DiGregorio, D. A. Submillisecond optical reporting of membrane potential in situ using a neuronal tracer dye. J. Neurosci. 2009, 29, 9197–9209.

18

Huang, Y. L.; Walker, A. S.; Miller, E. W. A photostable silicon rhodamine platform for optical voltage sensing. J. Am. Chem. Soc. 2015, 137, 10767– 10776.

19

Miller, E. W. Small molecule fluorescent voltage indicators for studying membrane potential. Curr. Opin. Chem. Biol. 2016, 33, 74–80.

20

Mačianskiene, R.; Almanaitytė, M.; Treinys, R.; Navalinskas, A.; Benetis, R.; Jurevičius, J. Spectral characteristics of voltage-sensitive indocyanine green fluorescence in the heart. Sci. Rep. 2017, 7, 7983.

21

Xu, Y. X.; Peng, L. X.; Wang, S. C.; Wang, A. Q.; Ma, R. R.; Zhou, Y.; Yang, J. H.; Sun, D. E.; Lin, W.; Chen, X. et al. Hybrid indicators for fast and sensitive voltage imaging. Angew. Chem. , Int. Ed. 2018, 57, 3949–3953.

22

Fink, A. E.; Bender, K. J.; Trussell, L. O.; Otis, T. S.; DiGregorio, D. A. Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor. PLoS One 2012, 7, e41434.

23

Marshall, J. D.; Schnitzer, M. J. Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. ACS Nano 2013, 7, 4601–4609.

24

Rowland, C. E.; Susumu, K.; Stewart, M. H.; Oh, E.; Mäkinen, A. J.; O'Shaughnessy, T. J.; Kushto, G.; Wolak, M. A.; Erickson, J. S.; Efros, A. L. et al. Electric field modulation of semiconductor quantum dot photoluminescence: Insights into the design of robust voltage-sensitive cellular imaging probes. Nano Lett. 2015, 15, 6848–6854.

25

Nag, O. K.; Stewart, M. H.; Deschamps, J. R.; Susumu, K.; Oh, E.; Tsytsarev, V.; Tang, Q. G.; Efros, A. L.; Vaxenburg, R.; Black, B. J. et al. Quantum dot-peptide-fullerene bioconjugates for visualization of in vitro and in vivo cellular membrane potential. ACS Nano 2017, 11, 5598–5613.

26

Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.

27

Chen, G. C.; Tian, F.; Zhang, Y.; Zhang, Y. J.; Li, C. Y.; Wang, Q. B. Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv. Funct. Mater. 2014, 24, 2481–2488.

28

Li, C. Y.; Zhang, Y. J.; Wang, M.; Zhang, Y.; Chen, G. C.; Li, L.; Wu, D. M.; Wang, Q. B. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-Ⅱ window. Biomaterials 2014, 35, 393–400.

29

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

30

Zheng, Y.; Gao, S.; Ying, J. Y. Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv. Mater. 2007, 19, 376–380.

31

Wang, Q. B.; Liu, Y.; Ke, Y. G.; Yan, H. Quantum dot bioconjugation during core-shell synthesis. Angew. Chem. , Int. Ed. 2007, 47, 316–319.

32

Hu, F.; Li, C. Y.; Zhang, Y. J.; Wang, M.; Wu, D. M.; Wang, Q. B. Real-time in vivo visualization of tumor therapy by a near-infrared-Ⅱ Ag2S quantum dot-based theranostic nanoplatform. Nano Res. 2015, 8, 1637–1647.

33

Zhao, P.; Xu, Q.; Tao, J.; Jin, Z. W.; Pan, Y.; Yu, C. M.; Yu, Z. Q. Near infrared quantum dots in biomedical applications: Current status and future perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1483.

34

Nunez, J. Primary culture of hippocampal neurons from P0 newborn rats. J. Vis. Exp. 2008, 19, e895.

35

Rueden, C. T.; Schindelin, J.; Hiner, M. C.; DeZonia, B. E.; Walter, A. E.; Arena, E. T.; Eliceiri, K. W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 2017, 18, 529.

36

Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695–3702.

37

Zheng, Y.; Yang, Z.; Ying, J. Y. Aqueous synthesis of glutathione-capped ZnSe and Zn1−xCdxSe alloyed quantum dots. Adv. Mater. 2007, 19, 1475–1479.

38

Yu, M. X.; Zhou, C.; Liu, J. B.; Hankins, J. D.; Zheng, J. Luminescent gold nanoparticles with pH-dependent membrane adsorption. J. Am. Chem. Soc. 2011, 133, 11014–11017.

39

Nakane, Y.; Tsukasaki, Y.; Sakata, T.; Yasuda, H.; Jin, T. Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1, 000–1, 400 nm). Chem. Commun. 2013, 49, 7584–7586.

40

Dimitrov, D.; He, Y.; Mutoh, H.; Baker, B. J.; Cohen, L.; Akemann, W.; Knöpfel, T. Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS One 2007, 2, e440.

41

Perron, A.; Mutoh, H.; Akemann, W.; Gautam, S. G.; Dimitrov, D.; Iwamoto, Y.; Knopfel, T. Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential. Front. Mol. Neurosci. 2009, 2, 5.

42

Park, J.; Werley, C. A.; Venkatachalam, V.; Kralj, J. M.; Dib-Hajj, S. D.; Waxman, S. G.; Cohen, A. E. Screening fluorescent voltage indicators with spontaneously spiking HEK cells. PLoS One 2013, 8, e85221.

43

Woodford, C. R.; Frady, E. P.; Smith, R. S.; Morey, B.; Canzi, G.; Palida, S. F.; Araneda, R. C.; Kristan, W. B. Jr.; Kubiak, C. P.; Miller, E. W. et al. Improved PeT molecules for optically sensing voltage in neurons. J. Am. Chem. Soc. 2015, 137, 1817–1824.

44

Eckman, J. R.; Eaton, J. W. Dependence of plasmodial glutathione metabolism on the host cell. Nature 1979, 278, 754–756.

45

Ballatori, N.; Krance, S. M.; Marchan, R.; Hammond, C. L. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol. Aspects Med. 2009, 30, 13–28.

46

Homma, M.; Suzuki, H.; Kusuhara, H.; Naito, M.; Tsuruo, T.; Sugiyama, Y. High-affinity efflux transport system for glutathione conjugates on the luminal membrane of a mouse brain capillary endothelial cell line (MBEC4). J. Pharmacol. Exp. Ther. 1999, 288, 198–203.

47

Chanda, B.; Blunck, R.; Faria, L. C.; Schweizer, F. E.; Mody, I.; Bezanilla, F. A hybrid approach to measuring electrical activity in genetically specified neurons. Nat. Neurosci. 2005, 8, 1619–1626.

Nano Research
Pages 1321-1326
Cite this article:
Chen G, Zhang Y, Peng Z, et al. Glutathione-capped quantum dots for plasma membrane labeling and membrane potential imaging. Nano Research, 2019, 12(6): 1321-1326. https://doi.org/10.1007/s12274-019-2283-1
Topics:
Part of a topical collection:

886

Views

28

Crossref

N/A

Web of Science

31

Scopus

1

CSCD

Altmetrics

Received: 28 November 2018
Revised: 29 December 2018
Accepted: 31 December 2018
Published: 29 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return