AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts

Hao ZhangHaoyi LiBilal AkramXun Wang( )
Department of Chemistry,Tsinghua University,Beijing,100084,China;
Show Author Information

Graphical Abstract

Abstract

Structure–activity relationship (SAR) is the key problem of nanoscience, thus to fabricate novel and well-defined nanostructure will provide a new insight on catalyst preparation method. Highly active and low cost electrocatalysts for oxygen evolution reaction (OER) are of great importance for future renewable energy conversion and storage. Herein, NiFe-based layered double hydroxides with laminar structure (NFLS) were successfully fabricated via a one-step hydrothermal approach by using sodium dodecyl sulfate as surfactant. The as-fabricated NFLS showed a well-defined periodic layered-stacking geometry with a scale down to 1-nm. Benefitting from the unique structure, NFLS exhibited an excellent catalytic activity towards OER with current densities of 10 mA·cm−2 at overpotential of 197 mV. The synergistic effect of Ni and Fe plays a key role in electrode reactions. The present work provides a new insight to improve the OER performance by rational design of electrocatalysts with unique structures.

Electronic Supplementary Material

Download File(s)
12274_2019_2284_MOESM1_ESM.pdf (2.2 MB)

References

1

Yang, Y.; Yang, Y.; Chen, S. M.; Lu, Q. C.; Song, L.; Wei, Y.; Wang, X. Atomic-level molybdenum oxide nanorings with full-spectrum absorption and photoresponsive properties. Nat. Commun. 2017, 8, 1559.

2

Hu, S.; Wang, X. Ultrathin nanostructures: Smaller size with new phenomena. Chem. Soc. Rev. 2013, 42, 5577–5594.

3

Gu, C. D.; Ge, X.; Wang, X. L.; Tu, J. P. Cation-anion double hydrolysis derived layered single metal hydroxide superstructures for boosted supercapacitive energy storage. J. Mater. Chem. A 2015, 3, 14228–14238.

4

Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

5

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

6

Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9, 1977–1984.

7

Andronescu, C.; Barwe, S.; Ventosa, E.; Masa, J.; Vasile, E.; Konkena, B.; Möller, S.; Schuhmann, W. Powder catalyst fixation for post-electrolysis structural characterization of NiFe layered double hydroxide based oxygen evolution reaction electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 11258–11262.

8

Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.

9

Song, F.; Hu, X. L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484.

10

Han, N.; Zhao, F. P.; Li, Y. G. Ultrathin nickel-iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. J. Mater. Chem. A 2015, 3, 16348–16353.

11

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

12

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1781–1781.

13

Yang, J. H.; Cooper, J. K.; Toma, F. M.; Walczak, K. A.; Favaro, M.; Beeman, J. W.; Hess, L. H.; Wang, C.; Zhu, C. H.; Gul, S. et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nat. Mater. 2017, 16, 335–341.

14

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and feni double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.

15

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.

16

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García- Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

17

Ge, X. M.; Liu, Y. Y.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Xiao, P.; Zhang, Z.; Lim, S. H.; Li, B.; Wang, X. et al. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl. Mater. Interfaces 2014, 6, 12684–12691.

18

Li, Y. Y.; Liu, B.; Wang, H.; Su, X. S.; Gao, L.; Zhou, F.; Duan, G. T. Co3O4 nanosheet-built hollow dodecahedrons via a two-step self-templated method and their multifunctional applications. Sci. China Mater. 2018, 61, 1575–1586.

19

Guo, Y.; Yao, Y.; Li, H.; He, L. L.; Zhu, Z. W.; Yang, Z. Z.; Gong, L. D.; Liu, C.; Zhao, D. X. Theoretical study on the mechanism of photosynthetic oxygen evolution by ABEEM/MM/MD and BS-DFT. Acta Chim. Sin. 2017, 75, 903–913.

20

Gao, M. R.; Sheng, W. C.; Zhuang, Z. B.; Fang, Q. R.; Gu, S.; Jiang, J.; Yan, Y. S. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077–7084.

21

Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516–4522.

22

Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 8670–8674.

23

Wang, Y. Y.; Xie, C.; Liu, D. D.; Huang, X. B.; Huo, J.; Wang, S. Y. Nanoparticle-stacked porous nickel-iron nitride nanosheet: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2016, 8, 18652–18657.

24

Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ni3FeN nano-particles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater. 2016, 6, 1502585.

25

Swesi, A. T.; Masud, J.; Nath, M. Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ. Sci. 2016, 9, 1771–1782.

26

Xu, X.; Song, F.; Hu, X. L. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 2016, 7, 12324.

27

Wang, C. D.; Jiang, J.; Ding, T.; Chen, G. H.; Xu, W. J.; Yang, Q. Monodisperse ternary NiCoP nanostructures as a bifunctional electrocatalyst for both hydrogen and oxygen evolution reactions with excellent performance. Adv. Mater. Interfaces 2016, 3, 1500454.

28

Pramanik, M.; Li, C. L.; Imura, M.; Malgras, V.; Kang, Y. M.; Yamauchi, Y. Ordered mesoporous cobalt phosphate with crystallized walls toward highly active water oxidation electrocatalysts. Small 2016, 12, 1709–1715.

29

Liu, M. J.; Li, J. H. Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl. Mater. Interfaces 2016, 8, 2158–2165.

30

He, P. L.; Yu, X. Y.; Lou, X. W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem., Int. Ed. 2017, 56, 3897–3900.

31

Chi, J.; Yu, H. M.; Qin, B. W.; Fu, L.; Jia, J.; Yi, B. L.; Shao, Z. G. Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 464–471.

32

Zhang, C.; Shao, M. F.; Zhou, L.; Li, Z. H.; Xiao, K. M.; Wei, M. Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 33697–33703.

33

Zhou, D. J.; Cai, Z.; Bi, Y. M.; Tian, W. L.; Luo, M.; Zhang, Q.; Zhang, Q.; Xie, Q. X.; Wang, J. D.; Li, Y. P. et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res. 2018, 11, 1358–1368.

34

Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum Dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 7918–7925.

35

Xiong, X. Y.; Cai, Z.; Zhou, D. J.; Zhang, G. X.; Zhang, Q.; Jia, Y.; Duan, X. X.; Xie, Q. X.; Lai, S. B.; Xie, T. H. et al. A highly-efficient oxygen evolution electrode based on defective nickel-iron layered double hydroxide. Sci. China Mater. 2018, 61, 939–947.

36

Ma, J. Z.; Xiang, Z. H.; Zhang, J. T. Three-dimensional nitrogen and phosphorous Co-doped graphene aerogel electrocatalysts for efficient oxygen reduction reaction. Sci. China Chem. 2018, 61, 592–597.

37

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

38

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

39

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

40

Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

41

Parvulescu, A. N.; Hausoul, P. J. C.; Bruijnincx, P. C. A.; Korhonen, S. T.; Teodorescu, C.; Gebbink, R. J. M. K.; Weckhuysen, B. M. Telomerization of 1, 3-butadiene with biomass-derived alcohols over a heterogeneous Pd/TPPTS catalyst based on layered double hydroxides. ACS Catal. 2011, 1, 526–536.

42

Liu, Z. P.; Ma, R. Z.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 2006, 128, 4872–4880.

43

Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827.

44

Ni, B.; He, T.; Wang, J. O.; Zhang, S. M.; Ouyang, C.; Long, Y.; Zhuang, J.; Wang, X. The formation of (NiFe)S2 pyrite mesocrystals as efficient pre-catalysts for water oxidation. Chem. Sci. 2018, 9, 2762–2767.

45

Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580–11586.

46

Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119–4125.

47

Cheng, Y.; Dou, S.; Saunders, M.; Zhang, J.; Pan, J.; Wang, S. Y.; Jiang, S. P. A class of transition metal-oxide@MnOx core-shell structured oxygen electrocatalysts for reversible O2 reduction and evolution reactions. J. Mater. Chem. A 2016, 4, 13881–13889.

48

Hou, J. G.; Sun, Y. Q.; Cao, S. Y.; Wu, Y. Z.; Chen, H.; Sun, L. C. Graphene dots embedded phosphide nanosheet-assembled tubular arrays for efficient and stable overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 24600–24607.

49

Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 14433–14437.

Nano Research
Pages 1327-1331
Cite this article:
Zhang H, Li H, Akram B, et al. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Research, 2019, 12(6): 1327-1331. https://doi.org/10.1007/s12274-019-2284-0
Topics:
Part of a topical collection:

915

Views

57

Crossref

N/A

Web of Science

58

Scopus

16

CSCD

Altmetrics

Received: 05 December 2018
Revised: 31 December 2018
Accepted: 01 January 2019
Published: 29 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return