AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Extending the operational lifetimes of all-direct electron transfer enzymatic biofuel cells by magnetically assembling and exchanging the active biocatalyst layers on stationary electrodes

Katharina Herkendell( )Andreas StemmerRan Tel-Vered( )
Säumerstrasse 4, Nanotechnology Group,D-MAVT, ETH Zürich,Rüschlikon,CH-8803,Switzerland;
Show Author Information

Graphical Abstract

Abstract

Enzymatic biofuel cells promise green power generation from a variety of natural resources, yet these systems all suffer from time-dependent degradation effects, in particular progressing inactivation of enzymes, which severely limit the operational lifetimes of such power sources. To extend operational lifetimes, we introduce a method to magnetically exchange exhausted enzymes for fresh ones. To this end, anodic and cathodic enzymes or enzyme cascades are immobilized on carbon coated magnetic nanoparticles. Under the action of suitable magnetic field gradients, these nanoparticles are assembled on the respective stationary electrodes, or released from the electrodes for collection and subsequent exchange. We demonstrate this method on a fructose/oxygen consuming biofuel cell employing fructose dehydrogenase and bilirubin oxidase as well as on anodic and cathodic cascades employing fructose dehydrogenase/invertase and bilirubin oxidase/catalase, respectively. The enzyme-modified nanoparticles support direct electron transfer bioelectrocatalytic currents by wiring the redox active cofactors to the carbonaceous coating and from there to the electrode surfaces. The facile injection, assembly, and removal of enzyme-modified magnetic nanoparticles along with fuel solution provides a promising approach to extend the operational lifetime of enzymatic biofuel cells without the need for exchanging entire systems including chambers and electrodes.

Electronic Supplementary Material

Download File(s)
12274_2019_2285_MOESM1_ESM.pdf (1.8 MB)

References

1

Liu, C.; Alwarappan, S.; Chen, Z. F.; Kong, X. X.; Li, C. Z. Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens. Bioelectron. 2010, 25, 1829-1833.

2

Kim, R. E.; Hong, S. G.; Ha, S.; Kim, J. Enzyme adsorption, precipitation and crosslinking of glucose oxidase and laccase on polyaniline nanofibers for highly stable enzymatic biofuel cells. Enzyme Microb. Technol. 2014, 66, 35-41.

3

Liu, C.; Chen, Z. F.; Li, C. Z. Surface engineering of graphene-enzyme nanocomposites for miniaturized biofuel cell. IEEE Trans. Nanotechnol. 2011, 10, 59-62.

4

Moehlenbrock, M. J.; Minteer, S. D. Extended lifetime biofuel cells. Chem. Soc. Rev. 2008, 37, 1188-1196.

5

Vaddiraju, S.; Tomazos, I.; Burgess, D. J.; Jain, F. C.; Papadimitrakopoulos, F. Emerging synergy between nanotechnology and implantable biosensors: A review. Biosens. Bioelectron. 2010, 25, 1553-1565.

6

Rasmussen, M.; Abdellaoui, S.; Minteer, S. D. Enzymatic biofuel cells: 30 years of critical advancements. Biosens. Bioelectron. 2016, 76, 91-102.

7

Yang, X. Y.; Tian, G.; Jiang, N.; Su, B. L. Immobilization technology: A sustainable solution for biofuel cell design. Energy Environ. Sci. 2012, 5, 5540-5563.

8

Cooney, M. J.; Svoboda, V.; Lau, C.; Martin, G.; Minteer, S. D. Enzyme catalysed biofuel cells. Energy Environ. Sci. 2008, 1, 320-337.

9

Fischback, M. B.; Youn, J. K.; Zhao, X. Y.; Wang, P.; Park, H. G.; Chang, H. N.; Kim, J.; Ha, S. Miniature biofuel cells with improved stability under continuous operation. Electroanalysis 2006, 18, 2016-2022.

10

Ramanavicius, A.; Kausaite, A.; Ramanaviciene, A. Enzymatic biofuel cell based on anode and cathode powered by ethanol. Biosens. Bioelectron. 2008, 24, 761-766.

11

Wang, X. J.; Falk, M.; Ortiz, R.; Matsumura, H.; Bobacka, J.; Ludwig, R.; Bergelin, M.; Gorton, L.; Shleev, S. Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes. Biosens. Bioelectron. 2012, 31, 219-225.

12

MacVittie, K.; Conlon, T.; Katz, E. A wireless transmission system powered by an enzyme biofuel cell implanted in an orange. Bioelectrochemistry 2015, 106, 28-33.

13

Coman, V.; Vaz-Dominguez, C.; Ludwig, R.; Harreither, W.; Haltrich, D.; De Lacey, A. L.; Ruzgas, T.; Gorton, L.; Shleev, S. A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell. Phys. Chem. Chem. Phys. 2008, 10, 6093-6096.

14

Mazurenko, I.; Monsalve, K.; Infossi, P.; Giudici-Orticoni, M. T.; Topin, F.; Mano, N.; Lojou, E. Impact of substrate diffusion and enzyme distribution in 3D-porous electrodes: A combined electrochemical and modelling study of a thermostable H2/O2 enzymatic fuel cell. Energy Environ. Sci. 2017, 10, 1966-1982.

15

Shao, M. L.; Zafar, M. N.; Falk, M.; Ludwig, R.; Sygmund, C.; Peterbauer, C. K.; Guschin, D. A.; MacAodha, D.; Conghaile, P. Ó.; Leech, D. et al. Optimization of a membraneless glucose/oxygen enzymatic fuel cell based on a bioanode with high coulombic efficiency and current density. ChemPhysChem 2013, 14, 2260-2269.

16

Ramanavicius, A.; Kausaite, A.; Ramanaviciene, A. Biofuel cell based on direct bioelectrocatalysis. Biosens. Bioelectron. 2005, 20, 1962-1967.

17

Okuda, J.; Yamazaki, T.; Fukasawa, M.; Kakehi, N.; Sode, K. The application of engineered glucose dehydrogenase to a direct electron-transfer-type continuous glucose monitoring system and a compartmentless biofuel cell. Anal. Lett. 2007, 40, 431-440.

18

Yuhashi, N.; Tomiyama, M.; Okuda, J.; Igarashi, S.; Ikebukuro, K.; Sode, K. Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase. Biosens. Bioelectron. 2005, 20, 2145-2150.

19

Rubenwolf, S.; Kerzenmacher, S.; Zengerle, R.; Von Stetten, F. Strategies to extend the lifetime of bioelectrochemical enzyme electrodes for biosensing and biofuel cell applications. Appl. Microbiol. Biotechnol. 2011, 89, 1315-1322.

20

Reuillard, B.; Abreu, C.; Lalaoui, N.; Le Goff, A.; Holzinger, M.; Ondel, O.; Buret, F.; Cosnier, S. One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. Bioelectrochemistry 2015, 106, 73-76.

21

Miyake, T.; Oike, M.; Yoshino, S.; Yatagawa, Y.; Haneda, K.; Nishizawa, M. Automatic, sequential power generation for prolonging the net lifetime of a miniature biofuel cell stack. Lab Chip 2010, 10, 2574-2578.

22

Willner, I.; Yan, Y. M.; Willner, B.; Tel-Vered, R. Integrated enzyme-based biofuel cells—A review. Fuel Cells 2009, 9, 7-24.

23

Willner, I.; Katz, E. Magnetic control of electrocatalytic and bioelectrocatalytic processes. Angew. Chem. , Int. Ed. 2003, 42, 4576-4588.

24

Katz, E.; Lioubashevski, O.; Willner, I. Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: Enhanced performance of biofuel cells. J. Am. Chem. Soc. 2005, 127, 3979-3988.

25

Lee, J.; Lee, D.; Oh, E.; Kim, J.; Kim, Y. P.; Jin, S. M.; Kim, H. S.; Hwang, Y.; Kwak, J. H.; Park, J. G. et al. Preparation of a magnetically switchable bio-electrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angew. Chem. 2005, 117, 7593-7598.

26

Wang, J.; Scampicchio, M.; Laocharoensuk, R.; Valentini, F.; González-García, O.; Burdick, J. Magnetic tuning of the electrochemical reactivity through controlled surface orientation of catalytic nanowires. J. Am. Chem. Soc. 2006, 128, 4562-4563.

27

Loaiza, Ó. A.; Laocharoensuk, R.; Burdick, J.; Rodríguez, M. C.; Pingarron, J. M.; Pedrero, M.; Wang, J. Adaptive orientation of multifunctional nanowires for magnetic control of bioelectrocatalytic processes. Angew. Chem. 2007, 119, 1530-1533.

28

Katz, E. Biofuel cells with switchable power output. Electroanalysis 2010, 22, 744-756.

29

Bahshi, L.; Frasconi, M.; Tel-Vered, R.; Yehezkeli, O.; Willner, I. Following the biocatalytic activities of glucose oxidase by electrochemically cross-linked enzyme-Pt nanoparticles composite electrodes. Anal. Chem. 2008, 80, 8253-8259.

30

Yan, Y. M.; Baravik, I.; Tel-Vered, R.; Willner, I. An ethanol/O2 biofuel cell based on an electropolymerized bilirubin oxidase/Pt nanoparticle bioelectrocatalytic O2-reduction cathode. Adv. Mater. 2009, 21, 4275-4279.

31

Willner, I.; Willner, B.; Tel-Vered, R. Electroanalytical applications of metallic nanoparticles and supramolecular nanostructures. Electroanalysis 2011, 23, 13-28.

32

Murata, K.; Kajiya, K.; Nakamura, N.; Ohno, H. Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell. Energy Environ. Sci. 2009, 2, 1280-1285.

33

Katz, E.; Willner, I.; Wang, J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 2004, 16, 19-44.

34

Peng, H. P.; Liang, R. P.; Zhang, L.; Qiu, J. D. Facile preparation of novel core-shell enzyme-Au-polydopamine-Fe3O4 magnetic bionanoparticles for glucosesensor. Biosens. Bioelectron. 2013, 42, 293-299.

35

Katz, E.; Willner, I. Switching of directions of bioelectrocatalytic currents and photocurrents at electrode surfaces by using hydrophobic magnetic nanoparticles. Angew. Chem. 2005, 117, 4869-4872.

36

Zakharchenko, A.; Guz, N.; Laradji, A. M.; Katz, E.; Minko, S. Magnetic field remotely controlled selective biocatalysis. Nat. Catal. 2018, 1, 73-81.

37

Eskandari, K.; Zarei, H.; Ghourchian, H.; Amoozadeh, S. M. The electrochemical study of glucose oxidase on gold-coated magnetic iron oxide nanoparticles. J. Anal. Chem. 2015, 70, 1254-1260.

38

Goh, W. J.; Makam, V. S.; Hu, J.; Kang, L. F.; Zheng, M. R.; Yoong, S. L.; Udalagama, C. N. B.; Pastorin, G. Iron oxide filled magnetic carbon nanotube-enzyme conjugates for recycling of amyloglucosidase: Toward useful applications in biofuel production process. Langmuir 2012, 28, 16864-16873.

39

Katz, E.; Baron, R.; Willner, I. Magnetoswitchable electrochemistry gated by alkyl-chain-functionalized magnetic nanoparticles:  Control of diffusional and surface-confined electrochemical processes. J. Am. Chem. Soc. 2005, 127, 4060-4070.

40

Taurino, I.; Sanzò, G.; Antiochia, R.; Tortolini, C.; Mazzei, F.; Favero, G.; De Micheli, G.; Carrara, S. Recent advances in third generation biosensors based on au and pt nanostructured electrodes. TrAC Trends Anal. Chem. 2016, 79, 151-159.

41

Das, P.; Das, M.; Chinnadayyala, S. R.; Singha, I. M.; Goswami, P. Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens. Bioelectron. 2016, 79, 386-397.

42

Lu, X. B.; Wen, Z. H.; Li, J. H. Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors. Biomaterials 2006, 27, 5740-5747.

43

Zhang, Q.; Qiao, Y.; Hao, F.; Zhang, L.; Wu, S. Y.; Li, Y.; Li, J. H.; Song, X. M. Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chem. Eur. —J. 2010, 16, 8133-8139.

44

Milton, R. D.; Minteer, S. D. Direct enzymatic bioelectrocatalysis: Differentiating between myth and reality. J. Roy. Soc. Interface 2017, 14, 20170253.

45

Cosnier, S.; Gross, A. J.; Le Goff, A.; Holzinger, M. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations. J. Power Sources 2016, 325, 252-263.

46

Falk, M.; Blum, Z.; Shleev, S. Direct electron transfer based enzymatic fuel cells. Electrochim. Acta 2012, 82, 191-202.

47

Wen, Z. H.; Ci, S. Q.; Hou, Y.; Chen, J. H. Facile one-pot, one-step synthesis of a carbon nanoarchitecture for an advanced multifunctonal electrocatalyst. Angew. Chem. , Int. Ed. 2014, 53, 6496-6500.

48

So, K.; Kawai, S.; Hamano, Y.; Kitazumi, Y.; Shirai, O.; Hibi, M.; Ogawa, J.; Kano, K. Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode. Phys. Chem. Chem. Phys. 2014, 16, 4823-4829.

49

Trifonov, A.; Herkendell, K.; Tel-Vered, R.; Yehezkeli, O.; Woerner, M.; Willner, I. Enzyme-capped relay-functionalized mesoporous carbon nanoparticles: Effective bioelectrocatalytic matrices for sensing and biofuel cell applications. ACS Nano 2013, 7, 11358-11368.

50

Taylor, A.; Krupskaya, Y.; Costa, S.; Oswald, S.; Krämer, K.; Füssel, S.; Klingeler, R.; Büchner, B.; Borowiak-Palen, E.; Wirth, M. P. Functionalization of carbon encapsulated iron nanoparticles. J. Nanopart. Res. 2010, 12, 513-519.

51

Ameyama, M.; Shinagawa, E.; Matsushita, K.; Adachi, O. D-fructose dehydrogenase of gluconobacter industrius: Purification, characterization, and application to enzymatic microdetermination of D-fructose. J. Bacteriol. 1981, 145, 814-823.

52

Herkendell, K.; Tel-Vered, R.; Stemmer, A. Switchable aerobic/anaerobic multi-substrate biofuel cell operating on anodic and cathodic enzymatic cascade assemblies. Nanoscale 2017, 9, 14118-14126.

53

Otsuka, K.; Sugihara, T.; Tsujino, Y.; Osakai, T.; Tamiya, E. Electrochemical consideration on the optimum ph of bilirubin oxidase. Anal. Biochem. 2007, 370, 98-106.

54

Trifonov, A.; Tel-Vered, R.; Fadeev, M.; Willner, I. Electrically contacted bienzyme-functionalized mesoporous carbon nanoparticle electrodes: Applications for the development of dual amperometric biosensors and multifuel-driven biofuel cells. Adv. Energy Mater. 2015, 5, 1401853.

55

Ramírez, P.; Mano, N.; Andreu, R.; Ruzgas, T.; Heller, A.; Gorton, L.; Shleev, S. Direct electron transfer from graphite and functionalized gold electrodes to T1 and T2/T3 copper centers of bilirubin oxidase. Biochim. Biophys. Acta 2008, 1777, 1364-1369.

56

Frasconi, M.; Boer, H.; Koivula, A.; Mazzei, F. Electrochemical evaluation of electron transfer kinetics of high and low redox potential laccases on gold electrode surface. Electrochim. Acta 2010, 56, 817-827.

57

Filip, J.; Šefčovičová, J.; Gemeiner, P.; Tkac, J. Electrochemistry of bilirubin oxidase and its use in preparation of a low cost enzymatic biofuel cell based on a renewable composite binder chitosan. Electrochim. Acta 2013, 87, 366-374.

58

Messiha, H. L.; Wongnate, T.; Chaiyen, P.; Jones, A. R.; Scrutton, N. S. Magnetic field effects as a result of the radical pair mechanism are unlikely in redox enzymes. J. Roy. Soc. Interface 2015, 12, 20141155.

59

Tsujimura, S.; Nishina, A.; Kamitaka, Y.; Kano, K. Coulometric D-fructose biosensor based on direct electron transfer using D-fructose dehydrogenase. Anal. Chem. 2009, 81, 9383-9387.

60

Bourdillon, C.; Demaille, C.; Moiroux, J.; Saveant, J. M. New insights into the enzymic catalysis of the oxidation of glucose by native and recombinant glucose oxidase mediated by electrochemically generated one-electron redox cosubstrates. J. Am. Chem. Soc. 1993, 115, 1-10.

61

Zhao, M.; Gao, Y.; Sun, J. Y.; Gao, F. Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots. Anal. Chem. 2015, 87, 2615-2622.

62

Zeng, T.; Pankratov, D.; Falk, M.; Leimkühler, S.; Shleev, S.; Wollenberger, U. Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells. Biosens. Bioelectron. 2015, 66, 39-42.

Nano Research
Pages 767-775
Cite this article:
Herkendell K, Stemmer A, Tel-Vered R. Extending the operational lifetimes of all-direct electron transfer enzymatic biofuel cells by magnetically assembling and exchanging the active biocatalyst layers on stationary electrodes. Nano Research, 2019, 12(4): 767-775. https://doi.org/10.1007/s12274-019-2285-z
Topics:

906

Views

32

Crossref

N/A

Web of Science

28

Scopus

1

CSCD

Altmetrics

Received: 25 October 2018
Revised: 17 December 2018
Accepted: 28 December 2018
Published: 25 January 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return