Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability

Weitao Yang1Long Ye2Fenfa Yao3Chuanhong Jin3Harald Ade2Hongzheng Chen1()
State Key Laboratory of Silicon Materials,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, & Department of Polymer Science and Engineering, Zhejiang University,Hangzhou,310027,China;
Department of Physics, Organic and Carbon Electronics Laboratory (ORaCEL),North Carolina State University,Raleigh,NC 27695,USA;
State Key Laboratory of Silicon Materials,School of Materials Science and Engineering, Zhejiang University,Hangzhou,310027,China;
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Morphology of the donor: acceptor blend plays a critical role in the photovoltaic performance of the organic solar cells (OSCs). Herein, liquid-phase-exfoliated black phosphorus nanoflakes (BPNFs), for their outstanding electronic property and good compatibility to solution process, were applied to fullerene-free OSCs as morphology modifier. Revealed by X-ray scattering measurements, the PTB7-Th: IEICO-4F blends incorporated with BPNFs exhibit more ordered π-π stacking and promoted domain purity, contributing to lower charge transport resistance and suppressed charge recombination within the bulk heterojunction (BHJ). As a result, a high fill factor (FF) of 0.73 and a best power conversion efficiency (PCE) of 12.2% were obtained for fullerene-free OSCs based on PTB7-Th: IEICO-4F blends incorporating with BPNFs, which is among the highest FF of the as-cast fullerene-free OSCs with PCE over 12%. More importantly, the embedded BPNFs help to improve the morphological stability of the devices probably by retarding the phase mixing in the BHJ during the aging period. Besides, analogous enhancements were observed in another fullerene-free OSCs based on PBDB-T: ITIC. In a word, this work provides a new strategy of using two-dimentional nanoflakes as facile and universal morphology modifier for efficient fullerene-free OSCs.

Electronic Supplementary Material

Download File(s)
12274_2019_2288_MOESM1_ESM.pdf (1.6 MB)

References

1

Hou, J. H.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119-128.

2

Li, S. S.; Ye, L.; Zhao, W. C.; Yan, H. P.; Yang, B.; Liu, D. L.; Li, W. N.; Ade, H.; Hou, J. H. A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc. 2018, 140, 7159-7167.

3

Meng, L. X.; Zhang, Y. M.; Wan, X. J.; Li, C. X.; Zhang, X.; Wang, Y. B.; Ke, X.; Xiao, Z.; Ding, L. M.; Xia, R. X. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094-1098.

4

Zheng, Z.; Hu, Q.; Zhang, S. Q.; Zhang, D. Y.; Wang, J. Q.; Xie, S. K.; Wang, R.; Qin, Y. P.; Li, W. N.; Hong, L. et al. A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer. Adv. Mater. 2018, 30, 1801801.

5

Cui, Y.; Yao, H. F.; Yang, C. Y.; Zhang, S. Q.; Hou, J. H. Organic solar cells with an efficiency approaching 15%. Acta Polym. Sin. 2018, (2), 223-230. (in Chinese)

6

Li, S. X.; Liu, W. Q.; Li, C.-Z.; Shi, M. M.; Chen, H. Z. Efficient organic solar cells with non-fullerene acceptors. Small 2017, 13, 1701120.

7

Zhang, X. A tandem polymer solar cell based on non-fullerene-acceptors yields an efficiency approaching 15%. Acta Polym. Sin. 2018, (2), 129-131. (in Chinese)

8

Arnoux, Q.; Watts, B.; Swaraj, S.; Rochet, F.; Tortech, L. X-ray microscopic investigation of molecular orientation in a hole carrier thin film for organic solar cells. Nano Res. 2018, 11, 2771-2782.

9

Yi, X. P.; Gautam, B.; Constantinou, I.; Cheng, Y. H.; Peng, Z. X.; Klump, E.; Ba, X. C.; Ho, C. H. Y.; Dong, C.; Marder, S. R. et al. Impact of nonfullerene molecular architecture on charge generation, transport, and morphology in PTB7-Th-based organic solar cells. Adv. Funct. Mater. 2018, 28, 1802702.

10

Zhou, Z. C.; Xu, S. J.; Song, J. N.; Jin, Y. Z.; Yue, Q. H.; Qian, Y. H.; Liu, F.; Zhang, F. Q.; Zhu, X. Z. High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat. Energy 2018, 3, 952-959.

11

Ye, L.; Zhao, W. C.; Li, S. S.; Mukherjee, S.; Carpenter, J. H.; Awartani, O.; Jiao, X. C.; Hou, J. H., Ade, H. High-efficiency nonfullerene organic solar cells: Critical factors that affect complex multi-length scale morphology and device performance. Adv. Energy Mater. 2017, 7, 1602000.

12

Li, S. X.; Zhan, L. L.; Zhao, W. C.; Zhang, S. H.; Ali, B.; Fu, Z. S.; Lau, T.-K.; Lu, X. H.; Shi, M. M.; Li, C.-Z. et al. Revealing the effects of molecular packing on the performances of polymer solar cells based on A-D-C-D-A type non-fullerene acceptors. J Mater. Chem. A 2018, 6, 12132-12141.

13

Graham, K. R.; Cabanetos, C.; Jahnke, J. P.; Idso, M. N.; El Labban, A.; Ngongang Ndjawa, G. O.; Heumueller, T.; Vandewal, K.; Salleo, A.; Chmelka, B. F. et al. Importance of the donor: Fullerene intermolecular arrangement for high-efficiency organic photovoltaics. J. Am. Chem. Soc. 2014, 136, 9608-9618.

14

Ye, L.; Hu, H. W.; Ghasemi, M.; Wang, T. H.; Collins, B. A.; Kim, J.-H.; Jiang, K.; Carpenter, J. H.; Li, H.; Li, Z. K. et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 2018, 17, 253-260.

15

Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, 4, 864-868.

16

Wang, J.-L.; Liu, K.-K.; Yan, J.; Wu, Z.; Liu, F.; Xiao, F.; Chang, Z.-F.; Wu, H.-B.; Cao, Y.; Russell, T. P. Series of multifluorine substituted oligomers for organic solar cells with efficiency over 9% and fill factor of 0.77 by combination thermal and solvent vapor annealing. J. Am. Chem. Soc. 2016, 138, 7687-7697.

17

Guo, X. G.; Zhou, N. J.; Lou, S. J.; Smith, J.; Tice, D. B.; Hennek, J. W.; Ortiz, R. P.; Navarrete, J. T. L.; Li, S. Y.; Strzalka, J. et al. Polymer solar cells with enhanced fill factors. Nat. Photonics 2013, 7, 825-833.

18

Wan, Q.; Guo, X.; Wang, Z. Y.; Li, W. B.; Guo, B.; Ma, W.; Zhang, M. J.; Li, Y. F. 10.8% Efficiency polymer solar cells based on PTB7-Th and PC71BM via binary solvent additives treatment. Adv. Funct. Mater. 2016, 26, 6635-6640.

19

Li, Y. F. Fullerene-bisadduct acceptors for polymer solar cells. Chem. —Asian J. 2013, 8, 2316-2328.

20

Dimitrov, S. D.; Durrant, J. R. Materials design considerations for charge generation in organic solar cells. Chem. Mater. 2014, 26, 616−630.

21

He, Z. C.; Xiao, B.; Liu, F.; Wu, H. B.; Yang, Y. L.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 2015, 9, 174-179.

22

Zhang, S. H.; Shah, M. N.; Liu, F.; Zhang, Z. Q.; Hu, Q.; Russell, T. P.; Shi, M. M.; Li, C.-Z.; Chen, H. Z. Efficient and 1, 8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive. Nano Res. 2017, 10, 3765-3774.

23

Yao, H. F.; Cui, Y.; Yu, R. N.; Gao, B. W.; Zhang, H.; Hou, J. H. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew. Chem., Int. Ed. 2017, 56, 3045-3049.

24

Zheng, Z.; Wang, R.; Yao, H. F.; Xie, S. K.; Zhang, Y.; Hou, J. H.; Zhou, H. Q.; Tang, Z. Y. Polyamino acid interlayer facilitates electron extraction in narrow band gap fullerene-free organic solar cells with an outstanding short-circuit current. Nano Energy 2018, 50, 169-175.

25

Liang, N. N.; Jiang, W.; Hou, J. H.; Wang, Z. H. New developments in non-fullerene small molecule acceptors for polymer solar cells. Mater. Chem. Front. 2017, 1, 1291-1303.

26

Liu, D. L.; Yang, B.; Jang, B.; Xu, B. W.; Zhang, S. Q.; He, C.; Woo, H. Y.; Hou, J. H. Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells. Energy Environ. Sci. 2017, 10, 546-551.

27

Qian, D. P.; Ye, L.; Zhang, M. J.; Liang, Y. R.; Li, L. J.; Huang, Y.; Guo, X.; Zhang, S. Q.; Tan, Z. A., Hou, J. H. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules 2012, 45, 9611-9617.

28

Kakavelakis, G.; Del Rio Castillo, A. E.; Pellegrini, V.; Ansaldo, A.; Tzourmpakis, P.; Brescia, R.; Prato, M.; Stratakis, E.; Kymakis, E., Bonaccorso, F. Size-tuning of WSe2 flakes for high efficiency inverted organic solar cells. ACS Nano 2017, 11, 3517-3531.

29

Xu, H.; Zhang, L.; Ding, Z. C.; Hu, J. L.; Liu, J.; Liu, Y. C. Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells. Nano Res. 2018, 11, 4293-4301.

30

Liu, S. H.; Lin, S. H.; You, P.; Surya, C.; Lau, S. P.; Yan, F. Black phosphorus quantum dots used for boosting light harvesting in organic photovoltaics. Angew. Chem., Int. Ed. 2017, 56, 13717-13721.

31

Istif, E.; Hernández-Ferrer, J.; Urriolabeitia, E. P.; Stergiou, A.; Tagmatarchis, N.; Fratta, G.; Large, M. J.; Dalton, A. B.; Benito, A. M.; Maser, W. K. Conjugated polymer nanoparticle-graphene oxide charge-transfer complexes. Adv. Funct. Mater. 2018, 28, 1707548.

32

Yang, X.; Fu, W. F.; Liu, W. Q.; Hong, J. H.; Cai, Y.; Jin, C. H.; Xu, M. S.; Wang, H. B.; Yang, D. R.; Chen, H. Z. Engineering crystalline structures of two-dimensional MoS2 sheets for high-performance organic solar cells. J. Mater. Chem. A 2014, 2, 7727-7733.

33

Yang, X.; Liu, W. Q.; Xiong, M.; Zhang, Y. Y.; Liang, T.; Yang, J. T.; Xu, M. S.; Ye, J.; Chen, H. Z. Au nanoparticles on ultrathin MoS2 sheets for plasmonic organic solar cells. J. Mater. Chem. A 2014, 2, 14798-14806.

34

Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732-2743.

35

Guo, Z. N.; Zhang, H.; Lu, S. B.; Wang, Z. T.; Tang, S. Y.; Shao, J. D.; Sun, Z. B.; Xie, H. H.; Wang, H. Y.; Yu, X. F. et al. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 2015, 25, 6996-7002.

36

Batmunkh, M.; Bat-Erdene, M.; Shapter, J. G. Black phosphorus: Synthesis and application for solar cells. Adv. Energy Mater. 2018, 8, 1701832.

37

Kyaw, A. K. K.; Wang, D. H.; Wynands, D.; Zhang, J.; Nguyen, T.-Q.; Bazan, G. C.; Heeger, A. J. Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. Nano Lett. 2013, 13, 3796-3801.

38

Cowan, S. R.; Roy, A.; Heeger, A. J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82, 245207.

39

Hexemer, A.; Bras, W.; Glossinger, J.; Schaible, E.; Gann, E.; Kirian, R.; MacDowell, A.; Church, M.; Rude, B.; Padmore, H. A SAXS/WAXS/GISAXS beamline with multilayer monochromator. J. Phys. : Conf. Ser. 2010, 247, 012007.

40

Gann, E.; Young, A. T.; Collins, B. A.; Yan, H.; Nasiatka, J.; Padmore, H. A.; Ade, H.; Hexemer, A.; Wang, C. Soft X-ray scattering facility at the advanced light source with real-time data processing and analysis. Rev. Sci. Instrum. 2012, 83, 045110.

41

Li, S. X.; Liu, W. Q.; Li, C.-Z.; Lau, T.-K.; Lu, X. H.; Shi, M. M.; Chen, H. Z. A non-fullerene acceptor with a fully fused backbone for efficient polymer solar cells with a high open-circuit voltage. J. Mater. Chem. A 2016, 4, 14983-14987.

42

Zhan, L. L.; Li, S. X.; Zhang, H. T.; Gao, F.; Lau, T.-K.; Lu, X. H.; Sun, D. Y.; Wang, P.; Shi, M. M.; Li, C.-Z. et al. A near-infrared photoactive morphology modifier leads to significant current improvement and energy loss mitigation for ternary organic solar cells. Adv. Sci. 2018, 5, 1800755.

43

Zhang, Y. Y.; Liu, S.; Liu, W. Q.; Liang, T.; Yang, X.; Xu, M. S.; Chen, H. Z. Two-dimensional MoS2-assisted immediate aggregation of poly-3-hexylthiophene with high mobility. Phys. Chem. Chem. Phys. 2015, 17, 27565-27572.

44

Ecker, B.; Egelhaaf, H.-J.; Steim, R.; Parisi, J.; Von Hauff, E. Understanding S-shaped current-voltage characteristics in organic solar cells containing a TiOx interlayer with impedance spectroscopy and equivalent circuit analysis. J. Phys. Chem. C 2012, 116, 16333-16337.

45

Jiang, J. X.; Wang, Q.; Jin, Z. W.; Zhang, X. S.; Lei, J.; Bin, H. J.; Zhang, Z. G.; Li, Y. F.; Liu, S. Z. Polymer doping for high-efficiency perovskite solar cells with improved moisture stability. Adv. Energy Mater. 2018, 8, 1701757.

46

Sivaraman, P.; Mishra, S. P.; Bhattacharrya, A. R.; Thakur, A.; Shashidhara, K.; Samui, A. B. Effect of regioregularity on specific capacitance of poly(3-hexylthiophene). Electrochim. Acta 2012, 69, 134-138.

47

Zhang, Y.; Li, L.; Yuan, S. S.; Li, G. Q.; Zhang, W. F. Electrical properties of the interfaces in bulk heterojunction organic solar cells investigated by electrochemical impedance spectroscopy. Electrochim. Acta 2013, 109, 221-225.

48

Upama, M. B.; Elumalai, N. K.; Mahmud, M. A.; Wright, M.; Wang, D.; Xu, C.; Uddin, A. Effect of annealing dependent blend morphology and dielectric properties on the performance and stability of non-fullerene organic solar cells. Sol. Energy Mater. Sol. Cells 2018, 176, 109-118.

49

Mateker, W. R.; McGehee, M. D. Progress in understanding degradation mechanisms and improving stability in organic photovoltaics. Adv. Mater. 2017, 29, 1603940.

50

Kesters, J.; Verstappen, P.; Raymakers, J.; Vanormelingen, W.; Drijkoningen, J.; D'Haen, J.; Manca, J.; Lutsen, L.; Vanderzande, D.; Maes, W. Enhanced organic solar cell stability by polymer (PCPDTBT) side chain functionalization. Chem. Mater. 2015, 27, 1332-1341.

51

Li, S. X.; Liu, W. Q.; Shi, M. M.; Mai, J. Q.; Lau, T.-K.; Wan, J. H.; Lu, X. H.; Li, C.-Z.; Chen, H. Z. A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy Environ. Sci. 2016, 9, 604-610.

52

Li, S. X.; Zhan, L. L.; Liu, F.; Ren, J.; Shi, M. M.; Li, C.-Z.; Russell, T. P.; Chen, H. Z. An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 2018, 30, 1705208.

53

Zhao, W. C.; Qian, D. P.; Zhang, S. Q.; Li, S. S.; Inganäs, O.; Gao, F.; Hou, J. H. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734-4739.

Nano Research
Pages 777-783
Cite this article:
Yang W, Ye L, Yao F, et al. Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability. Nano Research, 2019, 12(4): 777-783. https://doi.org/10.1007/s12274-019-2288-9
Topics:
Metrics & Citations  
Article History
Copyright
Return