Graphical Abstract

Magnesium ion batteries are emerging as promising alternatives to lithium ion batteries because of their advantages including high energy density, dendrite-free features and low cost. Nevertheless, one of the major challenges for magnesium ion batteries is the kinetically sluggish magnesium insertion/extraction and diffusion in electrode materials. Aiming at this issue, biphase eutectic-like bismuth-tin film is designed herein to construct a self-supporting anode with interdigitated phase distribution and hierarchically porous structure, and further fabricated by a facile one-step magnetron cosputtering route. As benchmarked with single-phase bismuth or tin film, the biphase bismuth-tin film delivers high specific capacity (538 mAh/g at 50 mA/g), excellent rate performance (417 mAh/g at 1, 000 mA/g) and good cycling stability (233 mAh/g at the 200th cycle). The superior magnesium storage performance of the sputtered bismuth-tin film could be attributed to the synergetic effect of the interdigitated bismuth/tin phase distribution, hierarchically porous structure and biphase buffering matrices, which could increase ionic transport channels, shorten diffusion lengths and reduce total volume changes.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.
Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724-727.
Orikasa, Y.; Masese, T.; Koyama, Y.; Mori, T.; Hattori, M.; Yamamoto, K.; Okado, T.; Huang, Z. D.; Minato, T.; Tassel, C. et al. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep. 2014, 4, 5622.
Mohtadi, R.; Mizuno, F. Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 2014, 5, 1291-1311.
Saha, P.; Datta, M. K.; Velikokhatnyi, O. I.; Manivannan, A.; Alman, D.; Kumta, P. N. Rechargeable magnesium battery: Current status and key challenges for the future. Prog. Mater. Sci. 2014, 66, 1-86.
NuLi, Y.; Yang, J.; Li, Y. S.; Wang, J. L. Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem. Commun. 2010, 46, 3794-3796.
NuLi, Y.; Zheng, Y. P.; Wang, Y.; Yang, J.; Wang, J. L. Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries. J. Mater. Chem. 2011, 21, 12437-12443.
Ling, C.; Banerjee, D.; Song, W.; Zhang, M. J.; Matsui, M. First-principles study of the magnesiation of olivines: Redox reaction mechanism, electrochemical and thermodynamic properties. J. Mater. Chem. 2012, 22, 13517-13523.
Rasul, S.; Suzuki, S.; Yamaguchi, S.; Miyayama, M. High capacity positive electrodes for secondary Mg-ion batteries. Electrochim. Acta 2012, 82, 243-249.
Zhang, R. G.; Arthur, T. S.; Ling, C.; Mizuno, F. Manganese dioxides as rechargeable magnesium battery cathode; synthetic approach to understand magnesiation process. J. Power Sources 2015, 282, 630-638.
Nam, K. W.; Kim, S.; Lee, S.; Salama, M.; Shterenberg, I.; Gofer, Y.; Kim, J. S.; Yang, E.; Park, C. S.; Kim, J. S. et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 2015, 15, 4071-4079.
Gershinsky, G.; Yoo, H. D.; Gofer, Y.; Aurbach, D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 2013, 29, 10964-10972.
Wang, Z. G.; Su, Q. L.; Deng, H. Q. Single-layered V2O5 a promising cathode material for rechargeable Li and Mg ion batteries: An ab initio study. Phys. Chem. Chem. Phys. 2013, 15, 8705-8709.
Tepavcevic, S.; Liu, Y. Z.; Zhou, D. H.; Lai, B.; Maser, J.; Zuo, X. B.; Chan, H.; Král, P.; Johnson, C. S.; Stamenkovic, V. et al. Nanostructured layered cathode for rechargeable Mg-ion batteries. ACS Nano 2015, 9, 8194-8205.
Liu, Y. C.; Jiao, L. F.; Wu, Q.; Du, J.; Zhao, Y. P.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries. J. Mater. Chem. A 2013, 1, 5822-5826.
Liu, Y. C.; Jiao, L. F.; Wu, Q.; Zhao, Y. P.; Cao, K. Z.; Liu, H. Q.; Wang, Y. J.; Yuan, H. T. Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. Nanoscale 2013, 5, 9562-9567.
Liang, Y. L.; Feng, R. J.; Yang, S. Q.; Ma, H.; Liang, J.; Chen, J. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall mg nanoparticle anode. Adv. Mater. 2011, 23, 640-643.
Song, J.; Sahadeo, E.; Noked, M.; Lee, S. B. Mapping the challenges of magnesium battery. J. Phys. Chem. Lett. 2016, 7, 1736-1749.
Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 2013, 6, 2265-2279.
Shterenberg, I.; Salama, M.; Gofer, Y.; Levi, E.; Aurbach, D. The challenge of developing rechargeable magnesium batteries. MRS Bull. 2014, 39, 453-460.
Yoo, H. D.; Liang, Y. L.; Dong, H.; Lin, J. H.; Wang, H.; Liu, Y. S.; Ma, L.; Wu, T. P.; Li, Y. F.; Ru, Q. et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat. Commun. 2017, 8, 339.
Pei, C. Y.; Xiong, F. Y.; Sheng, J. Z.; Yin, Y. M.; Tan, S. S.; Wang, D. D.; Han, C. H.; An, Q. Y.; Mai, L. Q. VO2 nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density. ACS Appl. Mater. Interfaces 2017, 9, 17060-17066.
Muldoon, J.; Bucur, C. B.; Oliver, A. G.; Sugimoto, T.; Matsui, M.; Kim, H. S.; Allred, G. D.; Zajicek, J.; Kotani, Y. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 2012, 5, 5941-5950.
Chakrabarti, S.; Biswas, K. DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application. J. Mater. Sci. 2017, 52, 10972-10980.
Liu, M.; Rong, Z. Q.; Malik, R.; Canepa, P.; Jain, A.; Ceder, G.; Persson, K. A. Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations. Energy Environ. Sci. 2015, 8, 964-974.
Ichitsubo, T.; Adachi, T.; Yagi, S.; Doi, T. Potential positive electrodes for high-voltage magnesium-ion batteries. J. Mater. Chem. 2011, 21, 11764-11772.
Arthur, T. S.; Singh, N.; Matsui, M. Electrodeposited Bi, Sb and Bi1−xSbx alloys as anodes for Mg-ion batteries. Electrochem. Commun. 2012, 16, 103-106.
Singh, N.; Arthur, T. S.; Ling, C.; Matsui, M.; Mizuno, F. A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 2013, 49, 149-151.
Shao, Y. Y.; Gu, M.; Li, X. L.; Nie, Z. M.; Zuo, P. J.; Li, G. S.; Liu, T. B.; Xiao, J.; Cheng, Y. W.; Wang, C. M. et al. Highly reversible mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett. 2014, 14, 255-260.
Cheng, Y. W.; Shao, Y. Y.; Parent, L. R.; Sushko, M. L.; Li, G. S.; Sushko, P. V.; Browning, N. D.; Wang, C. M.; Liu, J. Interface promoted reversible Mg insertion in nanostructured tin-antimony alloys. Adv. Mater. 2015, 27, 6598-6605.
Tan, Y. H.; Yao, W. T.; Zhang, T. W.; Ma, T.; Lu, L. L.; Zhou, F.; Yao, H. B.; Yu, S. H. High voltage magnesium-ion battery enabled by nanocluster Mg3Bi2 alloy anode in noncorrosive electrolyte. ACS Nano 2018, 12, 5856-5865.
Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725-763.
Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682-2699.
Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710-721.
Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.
Levi, E.; Levi, M. D.; Chasid, O.; Aurbach, D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J. Electroceram. 2009, 22, 13-19.
Zhou, X. J.; Tian, J.; Hu, J. L.; Li, C. L. High rate magnesium-sulfur battery with improved cyclability based on metal-organic framework derivative carbon host. Adv. Mater. 2018, 30, 1704166.
Benmayza, A.; Ramanathan, M.; Singh, N.; Mizuno, F.; Prakash, J. Electrochemical and thermal studies of bismuth electrodes for magnesium-ion cells. J. Electrochem. Soc. 2015, 162, A1630-A1635.
Murgia, F.; Stievano, L.; Monconduit, L.; Berthelot, R. Insight into the electrochemical behavior of micrometric Bi and Mg3Bi2 as high performance negative electrodes for Mg batteries. J. Mater. Chem. A 2015, 3, 16478-16485.
Dileo, R. A.; Zhang, Q.; Marschilok, A. C.; Takeuchi, K. J.; Takeuchi, E. S. Composite anodes for secondary magnesium ion batteries prepared via electrodeposition of nanostructured bismuth on carbon nanotube substrates. ECS Electrochem. Lett. 2015, 4, A10-A14.
Ramanathan, M.; Benmayza, A.; Prakash, J.; Singh, N.; Mizuno, F. A porous electrode model for the magnesiation and demagnesiation of a bismuth electrode in rechargeable magnesium-ion cells. J. Electrochem. Soc. 2016, 163, A477-A487.
Wang, W.; Liu, L.; Wang, P. F.; Zuo, T. T.; Yin, Y. X.; Wu, N.; Zhou, J. M.; Wei, Y.; Guo, Y. G. A novel bismuth-based anode material with a stable alloying process by the space confinement of an in situ conversion reaction for a rechargeable magnesium ion battery. Chem. Commun. 2018, 54, 1714-1717.
Penki, T. R.; Valurouthu, G.; Shivakumara, S.; Sethuraman, V. A.; Munichandraiah, N. In situ synthesis of bismuth (Bi)/reduced graphene oxide (RGO) nanocomposites as high-capacity anode materials for a Mg-ion battery. New J. Chem. 2018, 42, 5996-6004.
Murgia, F.; Weldekidan, E. T.; Stievano, L.; Monconduit, L.; Berthelot, R. First investigation of indium-based electrode in Mg battery. Electrochem. Commun. 2015, 60, 56-59.
Periyapperuma, K.; Tran, T. T.; Purcell, M. I.; Obrovac, M. N. The reversible magnesiation of Pb. Electrochim. Acta 2015, 165, 162-165.
Kitada, A.; Kang, Y.; Uchimoto, Y.; Murase, K. Electrochemical reactivity of magnesium ions with Sn-based binary alloys (Cu-Sn, Pb-Sn, and In-Sn). ECS Trans. 2014, 58, 75-80.
Murgia, F.; Monconduit, L.; Stievano, L.; Berthelot, R. Electrochemical magnesiation of the intermetallic InBi through conversion-alloying mechanism. Electrochim. Acta 2016, 209, 730-736.
Murgia, F.; Laurencin, D.; Weldekidan, E. T.; Stievano, L.; Monconduit, L.; Doublet, M. L.; Berthelot, R. Electrochemical Mg alloying properties along the Sb1−xBix solid solution. Electrochim. Acta 2018, 259, 276-283.
Li, X.; Lai, C.; Xiao, C. W.; Gao, X. P. Enhanced high rate capability of dual-phase Li4Ti5O12-TiO2 induced by pseudocapacitive effect. Electrochim. Acta 2011, 56, 9152-9158.
Rahman, M. M.; Wang, J. Z.; Hassan, M. F.; Wexler, D.; Liu, H. K. Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: A nanocomposite anode material for Li-ion batteries. Adv. Energy Mater. 2011, 1, 212-220.
Liu, G. Y.; Wang, H. Y.; Liu, G. Q.; Yang, Z. Z.; Jin, B.; Jiang, Q. C. Synthesis and electrochemical performance of high-rate dual-phase Li4Ti5O12-TiO2 nanocrystallines for Li-ion batteries. Electrochim. Acta 2013, 87, 218-223.
Gu, Y. X.; Zhu, Y. J.; Tang, Z. L.; Zhang, Y. H.; Yang, Y.; Wang, L. Design and synthesis of dual-phase Li4Ti5O12-TiO2 nanoparticles as anode material for lithium ion batteries. Mater. Lett. 2014, 131, 118-121.
Liao, J. Y.; Chabot, V.; Gu, M.; Wang, C. M.; Xiao, X. C.; Chen, Z. W. Dual phase Li4Ti5O12-TiO2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries. Nano Energy 2014, 9, 383-391.
Wu, Q. L.; Xu, J. G.; Yang, X. F.; Lu, F. Q.; He, S. M.; Yang, J. L.; Fan, H. J.; Wu, M. M. Ultrathin anatase TiO2 nanosheets embedded with TiO2-B nanodomains for lithium-ion storage: Capacity enhancement by phase boundaries. Adv. Energy Mater. 2015, 5, 1401756.
Chen, S. H.; Chen, C. C.; Chao, C. G. Novel morphology and solidification behavior of eutectic bismuth-tin (Bi-Sn) nanowires. J. Alloys Compd. 2009, 481, 270-273.
Chadwick, G. A. Eutectic alloy solidification. Prog. Mater. Sci. 1963-1965, 12, 99-182.
Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450-453.
Liu, Z. G.; Lee, J.; Xiang, G. L.; Glass, H. F. J.; Keyzer, E. N.; Dutton, S. E.; Grey, C. P. Insights into the electrochemical performances of Bi anodes for Mg ion batteries using 25Mg solid state NMR spectroscopy. Chem. Commun. 2017, 53, 743-746.
Ellis, L. D.; Hatchard, T. D.; Obrovac, M. N. Reversible insertion of sodium in tin. J. Electrochem. Soc. 2012, 159, A1801-A1805.
Beattie, S. D.; Hatchard, T.; Bonakdarpour, A.; Hewitt, K. C.; Dahn, J. R. Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries. J. Electrochem. Soc. 2003, 150, A701-A705.
Zhang, H. Y.; Ye, K.; Zhu, K.; Cang, R. B.; Yan, J.; Cheng, K.; Wang, G. L.; Cao, D. X. High-energy-density aqueous magnesium-ion battery based on a carbon-coated FeVO4 anode and a Mg-OMS-1 cathode. Chem. —Eur. J. 2017, 23, 17118-17126.
Du, H. P.; Zhang, Z. H.; He, J. J.; Cui, Z. L.; Chai, J. C.; Ma, J.; Yang, Z.; Huang, C. S.; Cui, G. L. A delicately designed sulfide graphdiyne compatible cathode for high-performance lithium/magnesium-sulfur batteries. Small 2017, 13, 1702277.
Tutusaus, O.; Mohtadi, R.; Singh, N.; Arthur, T. S.; Mizuno, F. Study of electrochemical phenomena observed at the Mg metal/electrolyte interface. ACS Energy Lett. 2017, 2, 224-229.
Li, X. G.; Gao, T.; Han, F. D.; Ma, Z. H.; Fan, X. L.; Hou, S.; Eidson, N.; Li, W. S.; Wang, C. S. Reducing Mg anode overpotential via ion conductive surface layer formation by iodine additive. Adv. Energy Mater. 2018, 8, 1701728.
Wu, Y. A.; Yin, Z. W.; Farmand, M.; Yu, Y. S.; Shapiro, D. A.; Liao, H. G.; Liang, W. I.; Chu, Y. H.; Zheng, H. M. In-situ multimodal imaging and spectroscopy of Mg electrodeposition at electrode-electrolyte interfaces. Sci. Rep. 2017, 7, 42527.
Hu, X. C.; Shi, Y.; Lang, S. Y.; Zhang, X.; Gu, L.; Guo, Y. G.; Wen, R.; Wan, L. J. Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. Nano Energy 2018, 49, 453-459.
Jin, W.; Li, Z. J.; Wang, Z. G.; Fu, Y. Q. Mg ion dynamics in anode materials of Sn and Bi for Mg-ion batteries. Mater. Chem. Phys. 2016, 182, 167-172.
Sun, X. Q.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z. Q.; Persson, K. A.; Ceder, G.; Nazar, L. F. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 2016, 9, 2273-2277.
Nguyen, D. T.; Tran, X. M.; Kang, J.; Song, S. W. Magnesium storage performance and surface film formation behavior of Tin anode material. ChemElectroChem 2016, 3, 1813-1819.
Jung, S. C.; Han, Y. K. Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode. J. Phys. Chem. C 2018, 122, 17643-17649.
Tanaka, Y.; Ikeda, M.; Sumita, M.; Ohno, T.; Takada, K. First-principles analysis on role of spinel (111) phase boundaries in Li4+3xTi5O12 Li-ion battery anodes. Phys. Chem. Chem. Phys. 2016, 18, 23383-23388.
Chu, C. X.; Yang, J.; Zhang, Q. Q.; Wang, N. N.; Niu, F. E.; Xu, X. N.; Yang, J.; Fan, W. L.; Qian, Y. T. Biphase-interface enhanced sodium storage and accelerated charge transfer: Flower-like anatase/bronze TiO2/C as an advanced anode material for Na-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 43648-43656.
Ding, X. K.; Zhang, L. L.; Yang, X. L.; Fang, H.; Zhou, Y. X.; Wang, J. Q.; Ma, D. Anthracite-derived dual-phase carbon-coated Li3V2(PO4)3 as high-performance cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 42788-42796.
Li, K. K.; Li, B. H.; Wu, J. X.; Kang, F. Y.; Kim, J. K.; Zhang, T. Y. Ultrafast-charging and long-life Li-ion battery anodes of TiO2-B and anatase dual-phase nanowires. ACS Appl. Mater. Interfaces 2017, 9, 35917-35926.
Tian, Y.; Xu, G. B.; Wu, Z. L.; Zhong, J. X.; Yang, L. W. Dual-phase spinel Li4Ti5O12/anatase TiO2 nanosheet anchored 3D reduced graphene oxide aerogel scaffolds as self-supporting electrodes for high-performance Na- and Li-ion batteries. RSC Adv. 2017, 7, 52702-52711.
Wang, S. T.; Yang, Y.; Quan, W.; Hong, Y.; Zhang, Z. T.; Tang, Z. L.; Li, J. Ti3+-free three-phase Li4Ti5O12/TiO2 for high-rate lithium ion batteries: Capacity and conductivity enhancement by phase boundaries. Nano Energy 2017, 32, 294-301.
Parent, L. R.; Cheng, Y. W.; Sushko, P. V.; Shao, Y. Y.; Liu, J.; Wang, C. M.; Browning, N. D. Realizing the full potential of insertion anodes for Mg-ion batteries through the nanostructuring of Sn. Nano Lett. 2015, 15, 1177-1182.