Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Magnesium ion batteries are emerging as promising alternatives to lithium ion batteries because of their advantages including high energy density, dendrite-free features and low cost. Nevertheless, one of the major challenges for magnesium ion batteries is the kinetically sluggish magnesium insertion/extraction and diffusion in electrode materials. Aiming at this issue, biphase eutectic-like bismuth-tin film is designed herein to construct a self-supporting anode with interdigitated phase distribution and hierarchically porous structure, and further fabricated by a facile one-step magnetron cosputtering route. As benchmarked with single-phase bismuth or tin film, the biphase bismuth-tin film delivers high specific capacity (538 mAh/g at 50 mA/g), excellent rate performance (417 mAh/g at 1, 000 mA/g) and good cycling stability (233 mAh/g at the 200th cycle). The superior magnesium storage performance of the sputtered bismuth-tin film could be attributed to the synergetic effect of the interdigitated bismuth/tin phase distribution, hierarchically porous structure and biphase buffering matrices, which could increase ionic transport channels, shorten diffusion lengths and reduce total volume changes.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.
Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724-727.
Orikasa, Y.; Masese, T.; Koyama, Y.; Mori, T.; Hattori, M.; Yamamoto, K.; Okado, T.; Huang, Z. D.; Minato, T.; Tassel, C. et al. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep. 2014, 4, 5622.
Mohtadi, R.; Mizuno, F. Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 2014, 5, 1291-1311.
Saha, P.; Datta, M. K.; Velikokhatnyi, O. I.; Manivannan, A.; Alman, D.; Kumta, P. N. Rechargeable magnesium battery: Current status and key challenges for the future. Prog. Mater. Sci. 2014, 66, 1-86.
NuLi, Y.; Yang, J.; Li, Y. S.; Wang, J. L. Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem. Commun. 2010, 46, 3794-3796.
NuLi, Y.; Zheng, Y. P.; Wang, Y.; Yang, J.; Wang, J. L. Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries. J. Mater. Chem. 2011, 21, 12437-12443.
Ling, C.; Banerjee, D.; Song, W.; Zhang, M. J.; Matsui, M. First-principles study of the magnesiation of olivines: Redox reaction mechanism, electrochemical and thermodynamic properties. J. Mater. Chem. 2012, 22, 13517-13523.
Rasul, S.; Suzuki, S.; Yamaguchi, S.; Miyayama, M. High capacity positive electrodes for secondary Mg-ion batteries. Electrochim. Acta 2012, 82, 243-249.
Zhang, R. G.; Arthur, T. S.; Ling, C.; Mizuno, F. Manganese dioxides as rechargeable magnesium battery cathode; synthetic approach to understand magnesiation process. J. Power Sources 2015, 282, 630-638.
Nam, K. W.; Kim, S.; Lee, S.; Salama, M.; Shterenberg, I.; Gofer, Y.; Kim, J. S.; Yang, E.; Park, C. S.; Kim, J. S. et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 2015, 15, 4071-4079.
Gershinsky, G.; Yoo, H. D.; Gofer, Y.; Aurbach, D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 2013, 29, 10964-10972.
Wang, Z. G.; Su, Q. L.; Deng, H. Q. Single-layered V2O5 a promising cathode material for rechargeable Li and Mg ion batteries: An ab initio study. Phys. Chem. Chem. Phys. 2013, 15, 8705-8709.
Tepavcevic, S.; Liu, Y. Z.; Zhou, D. H.; Lai, B.; Maser, J.; Zuo, X. B.; Chan, H.; Král, P.; Johnson, C. S.; Stamenkovic, V. et al. Nanostructured layered cathode for rechargeable Mg-ion batteries. ACS Nano 2015, 9, 8194-8205.
Liu, Y. C.; Jiao, L. F.; Wu, Q.; Du, J.; Zhao, Y. P.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries. J. Mater. Chem. A 2013, 1, 5822-5826.
Liu, Y. C.; Jiao, L. F.; Wu, Q.; Zhao, Y. P.; Cao, K. Z.; Liu, H. Q.; Wang, Y. J.; Yuan, H. T. Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. Nanoscale 2013, 5, 9562-9567.
Liang, Y. L.; Feng, R. J.; Yang, S. Q.; Ma, H.; Liang, J.; Chen, J. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall mg nanoparticle anode. Adv. Mater. 2011, 23, 640-643.
Song, J.; Sahadeo, E.; Noked, M.; Lee, S. B. Mapping the challenges of magnesium battery. J. Phys. Chem. Lett. 2016, 7, 1736-1749.
Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 2013, 6, 2265-2279.
Shterenberg, I.; Salama, M.; Gofer, Y.; Levi, E.; Aurbach, D. The challenge of developing rechargeable magnesium batteries. MRS Bull. 2014, 39, 453-460.
Yoo, H. D.; Liang, Y. L.; Dong, H.; Lin, J. H.; Wang, H.; Liu, Y. S.; Ma, L.; Wu, T. P.; Li, Y. F.; Ru, Q. et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat. Commun. 2017, 8, 339.
Pei, C. Y.; Xiong, F. Y.; Sheng, J. Z.; Yin, Y. M.; Tan, S. S.; Wang, D. D.; Han, C. H.; An, Q. Y.; Mai, L. Q. VO2 nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density. ACS Appl. Mater. Interfaces 2017, 9, 17060-17066.
Muldoon, J.; Bucur, C. B.; Oliver, A. G.; Sugimoto, T.; Matsui, M.; Kim, H. S.; Allred, G. D.; Zajicek, J.; Kotani, Y. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 2012, 5, 5941-5950.
Chakrabarti, S.; Biswas, K. DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application. J. Mater. Sci. 2017, 52, 10972-10980.
Liu, M.; Rong, Z. Q.; Malik, R.; Canepa, P.; Jain, A.; Ceder, G.; Persson, K. A. Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations. Energy Environ. Sci. 2015, 8, 964-974.
Ichitsubo, T.; Adachi, T.; Yagi, S.; Doi, T. Potential positive electrodes for high-voltage magnesium-ion batteries. J. Mater. Chem. 2011, 21, 11764-11772.
Arthur, T. S.; Singh, N.; Matsui, M. Electrodeposited Bi, Sb and Bi1−xSbx alloys as anodes for Mg-ion batteries. Electrochem. Commun. 2012, 16, 103-106.
Singh, N.; Arthur, T. S.; Ling, C.; Matsui, M.; Mizuno, F. A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 2013, 49, 149-151.
Shao, Y. Y.; Gu, M.; Li, X. L.; Nie, Z. M.; Zuo, P. J.; Li, G. S.; Liu, T. B.; Xiao, J.; Cheng, Y. W.; Wang, C. M. et al. Highly reversible mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett. 2014, 14, 255-260.
Cheng, Y. W.; Shao, Y. Y.; Parent, L. R.; Sushko, M. L.; Li, G. S.; Sushko, P. V.; Browning, N. D.; Wang, C. M.; Liu, J. Interface promoted reversible Mg insertion in nanostructured tin-antimony alloys. Adv. Mater. 2015, 27, 6598-6605.
Tan, Y. H.; Yao, W. T.; Zhang, T. W.; Ma, T.; Lu, L. L.; Zhou, F.; Yao, H. B.; Yu, S. H. High voltage magnesium-ion battery enabled by nanocluster Mg3Bi2 alloy anode in noncorrosive electrolyte. ACS Nano 2018, 12, 5856-5865.
Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725-763.
Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682-2699.
Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710-721.
Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.
Levi, E.; Levi, M. D.; Chasid, O.; Aurbach, D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J. Electroceram. 2009, 22, 13-19.
Zhou, X. J.; Tian, J.; Hu, J. L.; Li, C. L. High rate magnesium-sulfur battery with improved cyclability based on metal-organic framework derivative carbon host. Adv. Mater. 2018, 30, 1704166.
Benmayza, A.; Ramanathan, M.; Singh, N.; Mizuno, F.; Prakash, J. Electrochemical and thermal studies of bismuth electrodes for magnesium-ion cells. J. Electrochem. Soc. 2015, 162, A1630-A1635.
Murgia, F.; Stievano, L.; Monconduit, L.; Berthelot, R. Insight into the electrochemical behavior of micrometric Bi and Mg3Bi2 as high performance negative electrodes for Mg batteries. J. Mater. Chem. A 2015, 3, 16478-16485.
Dileo, R. A.; Zhang, Q.; Marschilok, A. C.; Takeuchi, K. J.; Takeuchi, E. S. Composite anodes for secondary magnesium ion batteries prepared via electrodeposition of nanostructured bismuth on carbon nanotube substrates. ECS Electrochem. Lett. 2015, 4, A10-A14.
Ramanathan, M.; Benmayza, A.; Prakash, J.; Singh, N.; Mizuno, F. A porous electrode model for the magnesiation and demagnesiation of a bismuth electrode in rechargeable magnesium-ion cells. J. Electrochem. Soc. 2016, 163, A477-A487.
Wang, W.; Liu, L.; Wang, P. F.; Zuo, T. T.; Yin, Y. X.; Wu, N.; Zhou, J. M.; Wei, Y.; Guo, Y. G. A novel bismuth-based anode material with a stable alloying process by the space confinement of an in situ conversion reaction for a rechargeable magnesium ion battery. Chem. Commun. 2018, 54, 1714-1717.
Penki, T. R.; Valurouthu, G.; Shivakumara, S.; Sethuraman, V. A.; Munichandraiah, N. In situ synthesis of bismuth (Bi)/reduced graphene oxide (RGO) nanocomposites as high-capacity anode materials for a Mg-ion battery. New J. Chem. 2018, 42, 5996-6004.
Murgia, F.; Weldekidan, E. T.; Stievano, L.; Monconduit, L.; Berthelot, R. First investigation of indium-based electrode in Mg battery. Electrochem. Commun. 2015, 60, 56-59.
Periyapperuma, K.; Tran, T. T.; Purcell, M. I.; Obrovac, M. N. The reversible magnesiation of Pb. Electrochim. Acta 2015, 165, 162-165.
Kitada, A.; Kang, Y.; Uchimoto, Y.; Murase, K. Electrochemical reactivity of magnesium ions with Sn-based binary alloys (Cu-Sn, Pb-Sn, and In-Sn). ECS Trans. 2014, 58, 75-80.
Murgia, F.; Monconduit, L.; Stievano, L.; Berthelot, R. Electrochemical magnesiation of the intermetallic InBi through conversion-alloying mechanism. Electrochim. Acta 2016, 209, 730-736.
Murgia, F.; Laurencin, D.; Weldekidan, E. T.; Stievano, L.; Monconduit, L.; Doublet, M. L.; Berthelot, R. Electrochemical Mg alloying properties along the Sb1−xBix solid solution. Electrochim. Acta 2018, 259, 276-283.
Li, X.; Lai, C.; Xiao, C. W.; Gao, X. P. Enhanced high rate capability of dual-phase Li4Ti5O12-TiO2 induced by pseudocapacitive effect. Electrochim. Acta 2011, 56, 9152-9158.
Rahman, M. M.; Wang, J. Z.; Hassan, M. F.; Wexler, D.; Liu, H. K. Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: A nanocomposite anode material for Li-ion batteries. Adv. Energy Mater. 2011, 1, 212-220.
Liu, G. Y.; Wang, H. Y.; Liu, G. Q.; Yang, Z. Z.; Jin, B.; Jiang, Q. C. Synthesis and electrochemical performance of high-rate dual-phase Li4Ti5O12-TiO2 nanocrystallines for Li-ion batteries. Electrochim. Acta 2013, 87, 218-223.
Gu, Y. X.; Zhu, Y. J.; Tang, Z. L.; Zhang, Y. H.; Yang, Y.; Wang, L. Design and synthesis of dual-phase Li4Ti5O12-TiO2 nanoparticles as anode material for lithium ion batteries. Mater. Lett. 2014, 131, 118-121.
Liao, J. Y.; Chabot, V.; Gu, M.; Wang, C. M.; Xiao, X. C.; Chen, Z. W. Dual phase Li4Ti5O12-TiO2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries. Nano Energy 2014, 9, 383-391.
Wu, Q. L.; Xu, J. G.; Yang, X. F.; Lu, F. Q.; He, S. M.; Yang, J. L.; Fan, H. J.; Wu, M. M. Ultrathin anatase TiO2 nanosheets embedded with TiO2-B nanodomains for lithium-ion storage: Capacity enhancement by phase boundaries. Adv. Energy Mater. 2015, 5, 1401756.
Chen, S. H.; Chen, C. C.; Chao, C. G. Novel morphology and solidification behavior of eutectic bismuth-tin (Bi-Sn) nanowires. J. Alloys Compd. 2009, 481, 270-273.
Chadwick, G. A. Eutectic alloy solidification. Prog. Mater. Sci. 1963-1965, 12, 99-182.
Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450-453.
Liu, Z. G.; Lee, J.; Xiang, G. L.; Glass, H. F. J.; Keyzer, E. N.; Dutton, S. E.; Grey, C. P. Insights into the electrochemical performances of Bi anodes for Mg ion batteries using 25Mg solid state NMR spectroscopy. Chem. Commun. 2017, 53, 743-746.
Ellis, L. D.; Hatchard, T. D.; Obrovac, M. N. Reversible insertion of sodium in tin. J. Electrochem. Soc. 2012, 159, A1801-A1805.
Beattie, S. D.; Hatchard, T.; Bonakdarpour, A.; Hewitt, K. C.; Dahn, J. R. Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries. J. Electrochem. Soc. 2003, 150, A701-A705.
Zhang, H. Y.; Ye, K.; Zhu, K.; Cang, R. B.; Yan, J.; Cheng, K.; Wang, G. L.; Cao, D. X. High-energy-density aqueous magnesium-ion battery based on a carbon-coated FeVO4 anode and a Mg-OMS-1 cathode. Chem. —Eur. J. 2017, 23, 17118-17126.
Du, H. P.; Zhang, Z. H.; He, J. J.; Cui, Z. L.; Chai, J. C.; Ma, J.; Yang, Z.; Huang, C. S.; Cui, G. L. A delicately designed sulfide graphdiyne compatible cathode for high-performance lithium/magnesium-sulfur batteries. Small 2017, 13, 1702277.
Tutusaus, O.; Mohtadi, R.; Singh, N.; Arthur, T. S.; Mizuno, F. Study of electrochemical phenomena observed at the Mg metal/electrolyte interface. ACS Energy Lett. 2017, 2, 224-229.
Li, X. G.; Gao, T.; Han, F. D.; Ma, Z. H.; Fan, X. L.; Hou, S.; Eidson, N.; Li, W. S.; Wang, C. S. Reducing Mg anode overpotential via ion conductive surface layer formation by iodine additive. Adv. Energy Mater. 2018, 8, 1701728.
Wu, Y. A.; Yin, Z. W.; Farmand, M.; Yu, Y. S.; Shapiro, D. A.; Liao, H. G.; Liang, W. I.; Chu, Y. H.; Zheng, H. M. In-situ multimodal imaging and spectroscopy of Mg electrodeposition at electrode-electrolyte interfaces. Sci. Rep. 2017, 7, 42527.
Hu, X. C.; Shi, Y.; Lang, S. Y.; Zhang, X.; Gu, L.; Guo, Y. G.; Wen, R.; Wan, L. J. Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. Nano Energy 2018, 49, 453-459.
Jin, W.; Li, Z. J.; Wang, Z. G.; Fu, Y. Q. Mg ion dynamics in anode materials of Sn and Bi for Mg-ion batteries. Mater. Chem. Phys. 2016, 182, 167-172.
Sun, X. Q.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z. Q.; Persson, K. A.; Ceder, G.; Nazar, L. F. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 2016, 9, 2273-2277.
Nguyen, D. T.; Tran, X. M.; Kang, J.; Song, S. W. Magnesium storage performance and surface film formation behavior of Tin anode material. ChemElectroChem 2016, 3, 1813-1819.
Jung, S. C.; Han, Y. K. Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode. J. Phys. Chem. C 2018, 122, 17643-17649.
Tanaka, Y.; Ikeda, M.; Sumita, M.; Ohno, T.; Takada, K. First-principles analysis on role of spinel (111) phase boundaries in Li4+3xTi5O12 Li-ion battery anodes. Phys. Chem. Chem. Phys. 2016, 18, 23383-23388.
Chu, C. X.; Yang, J.; Zhang, Q. Q.; Wang, N. N.; Niu, F. E.; Xu, X. N.; Yang, J.; Fan, W. L.; Qian, Y. T. Biphase-interface enhanced sodium storage and accelerated charge transfer: Flower-like anatase/bronze TiO2/C as an advanced anode material for Na-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 43648-43656.
Ding, X. K.; Zhang, L. L.; Yang, X. L.; Fang, H.; Zhou, Y. X.; Wang, J. Q.; Ma, D. Anthracite-derived dual-phase carbon-coated Li3V2(PO4)3 as high-performance cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 42788-42796.
Li, K. K.; Li, B. H.; Wu, J. X.; Kang, F. Y.; Kim, J. K.; Zhang, T. Y. Ultrafast-charging and long-life Li-ion battery anodes of TiO2-B and anatase dual-phase nanowires. ACS Appl. Mater. Interfaces 2017, 9, 35917-35926.
Tian, Y.; Xu, G. B.; Wu, Z. L.; Zhong, J. X.; Yang, L. W. Dual-phase spinel Li4Ti5O12/anatase TiO2 nanosheet anchored 3D reduced graphene oxide aerogel scaffolds as self-supporting electrodes for high-performance Na- and Li-ion batteries. RSC Adv. 2017, 7, 52702-52711.
Wang, S. T.; Yang, Y.; Quan, W.; Hong, Y.; Zhang, Z. T.; Tang, Z. L.; Li, J. Ti3+-free three-phase Li4Ti5O12/TiO2 for high-rate lithium ion batteries: Capacity and conductivity enhancement by phase boundaries. Nano Energy 2017, 32, 294-301.
Parent, L. R.; Cheng, Y. W.; Sushko, P. V.; Shao, Y. Y.; Liu, J.; Wang, C. M.; Browning, N. D. Realizing the full potential of insertion anodes for Mg-ion batteries through the nanostructuring of Sn. Nano Lett. 2015, 15, 1177-1182.