AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Trap and 1/f-noise effects at the surface and core of GaN nanowire gate-all-around FET structure

Mallem Siva Pratap Reddy1Ki-Sik Im2( )Jung-Hee Lee1( )Raphael Caulmione3Sorin Cristoloveanu4
School of Electronics Engineering,Kyungpook National University,Daegu,41566,Republic of Korea;
Advanced Material Research Center,Kumoh National Institute of Technology,Gumi,39177,Republic of Korea;
SOITEC,Bernin,38190,France;
Institute of Microelectronics,Electromagnetism and Photonics, Grenoble Polytechnic Institute,Minatec, Grenoble,38016,France;
Show Author Information

Graphical Abstract

Abstract

Using capacitance, conductance and noise measurements, we investigate the trapping behavior at the surface and in the core of triangular-shaped one-dimensional (1D) array of GaN nanowire gate-all-around field effect transistor (GAA FET), fabricated via a top-down process. The surface traps in such a low dimensional device play a crucial role in determining the device performance. The estimated surface trap density rapidly decreases with increasing frequency, ranging from 6.07 × 1012 cm−2·eV−1 at 1 kHz to 1.90 × 1011 cm−2·eV−1 at 1 MHz, respectively. The noise results reveal that the power spectral density increases with gate voltage and clearly exhibits 1/f-noise signature in the accumulation region (Vgs > Vth = 3.4 V) for all frquencies. In the surface depletion region (1.5 V < Vgs < Vth), the device is governed by 1/f at lower frequencies and 1/f2 noise at frequencies higher than ~ 5 kHz. The 1/f2 noise characteristics is attributed to additional generation–recombination (G–R), mostly caused by the electron trapping/detrapping process through deep traps located in the surface depletion region of the nanowire. The cutoff frequency for the 1/f2 noise characteristics further shifts to lower frequency of 102–103 Hz when the device operates in deep-subthreshold region (Vgs < 1.5 V). In this regime, the electron trapping/detrapping process through deep traps expands into the totally depleted nanowire core and the G–R noise prevails in the entire nanowire channel.

References

1

Shirak, O.; Shtempluck, O.; Kotchtakov, V.; Bahir, G.; Yaish, Y. E. High performance horizontal gate-all-around silicon nanowire field-effect transistors. Nanotechnology 2012, 23, 395202.

2

Mirza, M. M.; Schupp, F. J.; Mol, J. A.; MacLaren, D. A.; Briggs, G. A. D.; Paul, D. J. One dimensional transport in silicon nanowire junction-less field effect transistors. Sci. Rep. 2017, 7, 3004.

3

Azize, M.; Hsu, A. L.; Saadat, O. I.; Smith, M.; Gao, X.; Guo, S. P.; Gradecak, S.; Palacios, T. High-electron-mobility transistors based on InAlN/GaN nanoribbons. IEEE Electron Device Lett. 2011, 32, 1680-1682.

4

Liu, S. H.; Cai, Y.; Gu, G. D.; Wang, J. Y.; Zeng, C. H.; Shi, W. H.; Feng, Z. H.; Qin, H.; Cheng, Z. Q.; Chen, K. J. et al. Enhancement-mode operation of nanochannel array (NCA) AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2012, 33, 354-356.

5

Ohi, K.; Asubar, J. T.; Nishiguchi, K.; Hashizume, T. Current stability in multi-mesa-channel AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2013, 60, 2997-3004.

6

Lu, B.; Matioli, E.; Palacios, T. Tri-gate normally-off GaN power MISFET. IEEE Electron Device Lett. 2012, 33, 360-362.

7

Im, K. S.; Kim, R. H.; Kim, K. W.; Kim, D. S.; Lee, C. S.; Cristoloveanu, S.; Lee, J. H. Normally off single-nanoribbon Al2O3/GaN MISFET. IEEE Electron Device Lett. 2013, 34, 27-29.

8

Takashima, S.; Li Z. D.; Chow, T. P. Sidewall dominated characteristics on fin-gate AlGaN/GAN MOS-channel-HEMTs. IEEE Trans. Electron Devices 2013, 60, 3025-3031.

9

Lee, D. S.; Wang, H.; Hsu, A.; Azize, M.; Laboutin, O.; Cao, Y.; Johnson, J. W.; Beam, E.; Ketterson, A.; Schuette, M. L. et al. Nanowire channel InAlN/GaN HEMTs with high linearity of gm and fT. IEEE Electron Device Lett. 2013, 34, 969-971.

10

Im, K. S.; Won, C. H.; Jo, Y. W.; Lee, J. H.; Bawedin, M.; Cristoloveanu, S.; Lee, J. H. High-performance GaN-based nanochannel finFETs with/without AlGaN/GaN heterostructure. IEEE Trans. Electron Devices 2013, 60, 3012-3018.

11

Im, K. S.; Son, D. H.; Ahn, H. K.; Bae, S. B.; Mun, J. K.; Nam, E. S.; Cristoloveanu, S.; Lee, J. H. Performance improvement of normally off AlGaN/GaN finFETs with fully gate-covered nanochannel. Solid State Electron 2013, 89, 124-127.

12

Jo, Y. W.; Son, D. H.; Won, C. H.; Im, K. S.; Seo, J. H.; Kang, I. M.; Lee, J. H. AlGaN/GaN finFET with extremely broad transconductance by side-wall wet etch. IEEE Electron Device Lett. 2015, 36, 1008-1010.

13

Im, K. S.; Sindhuri, V.; Jo, Y. W.; Son, D. H.; Lee, J. H.; Cristoloveanu, S.; Lee, J. H. Fabrication of AlGaN/GaN Ω-shaped nanowire fin-shaped FETs by a top-down approach. Appl. Phys. Express 2015, 8, 066501.

14

Zhuang, D.; Edgar, J. H. Wet etching of GaN, AlN, and SiC: A review. Mater. Sci. Eng. R 2005, 48, 1-46.

15

Reddy, C. V.; Balakrishna, K.; Okumura, H.; Yoshida, S. The origin of persistent photoconductivity and its relationship with yellow luminescence in molecular beam epitaxy grown undoped GaN. Appl. Phys. Lett. 1998, 73, 244.

16

Chen, H. M.; Chen, Y. F.; Lee, M. C.; Feng, M. S. Persistent photoconductivity in n-type GaN. J. Appl. Phys. 1997, 82, 899-901.

17

Hirsch, M. T.; Wolk, J. A.; Walukiewicz, W.; Haller, E. E. Persistent photoconductivity in n-type GaN. Appl. Phys. Lett. 1997, 71, 1098-1100.

18

Polenta, L.; Rossi, M.; Cavallini, A.; Calarco, R.; Marso, M.; Meijers, R.; Richter, T.; Stoica, T.; Lüth, H. Investigation on localized states in GaN nanowires. ACS Nano 2008, 2, 287-292.

19

Reddy, V. R.; Reddy, M. S.; Rao, P. K. Effect of rapid thermal annealing on deep level defects in the Si-doped GaN. Microelectron. Eng. 2010, 87, 117-121.

20

Huang, H. Y.; Chuang, C. H.; Shu, C. K.; Pan, Y. C.; Lee, W. H.; Chen, W. K.; Lee, M. C. Photoluminescence and photoluminescence excitation studies of as-grown and P-implanted GaN: On the nature of yellow luminescence. Appl. Phys. Lett. 2002, 80, 3349-3351.

21

Im, K. S.; Won, C. H.; Vodapally, S.; Caulmilone, R.; Cristoloveanu, S.; Kim, Y. T.; Lee, J. H. Fabrication of normally-off GaN nanowire gate-all-around FET with top-down approach. Appl. Phys. Lett. 2016, 109, 143106.

22

Wong, B. M.; Léonard, F.; Li, Q. M.; Wang, G. T. Nanoscale effects on heterojunction electron gases in GaN/AlGaN core/shell nanowires. Nano Lett. 2011, 11, 3074-3079.

23

Mastro, M. A.; Simpkins, B.; Wang, G. T.; Hite, J.; Eddy, C. R. Jr.; Kim, H. Y.; Ahn, J.; Kim, J. Polarization fields in Ⅲ-nitride nanowire devices. Nanotechnology 2010, 21, 145205.

24

Kang, H. S.; Siva Pratap Reddy, M.; Kim, D. S.; Kim, K. W.; Ha, J. B.; Lee, Y. S.; Choi, H. C.; Lee, J. H. Effect of oxygen species on the positive flat-band voltage shift in Al2O3/GaN metal-insulator-semiconductor capacitors with post-deposition annealing. J. Phys. D Appl. Phys. 2013, 46, 155101.

25

Bülbül, M. M.; Zeyrek, S. Frequency dependent capacitance and conductance-voltage characteristics of Al/Si3N4/p-Si(100) MIS diodes. Microelectron. Eng. 2006, 83, 2522-2526.

26

Taoka, N.; Kubo, T.; Yamada, T.; Egawa, T.; Shimizu, M. Understanding of frequency dispersion in CV curves of metal-oxide-semiconductor capacitor with wide-bandgap semiconductor. Microelectron. Eng. 2017, 178, 182-185.

27

Güçlü, Ç. Ş.; Özdemir, A. F.; Kökce, A.; Altindal, Ş. Frequency and voltage-dependent dielectric properties and AC electrical conductivity of (Au/Ti)/ Al2O3/n-GaAs with thin Al2O3 interfacial layer at room temperature. Acta Phys. Pol. A 2016, 130, 325-330.

28

Nicollian, E. H.; Brews, J. R. MOS (Metal Oxide Semiconductor) Physics and Technology; John Wiley & Sons: New York, 1982.

29

Hill, W. A.; Coleman, C. C. A single-frequency approximation for interface-state density determination. Solid State Electron. 1980, 23, 987-993.

30

Balandin, A.; Cai, S.; Li, R.; Wang, K. L.; Rao, V. R.; Viswanathan, C. R. Flicker noise in GaN/Al/sub 0.15/Ga/sub 0.85/N doped channel heterostructure field effect transistors. IEEE Electron Device Lett. 1998, 19, 475-477.

31

Levinshtein, M. E.; Rumyantsev, S. L.; Gaska, R.; Yang, J. W.; Shur, M. S. AlGaN/GaN high electron mobility field effect transistors with low 1/f noise. Appl. Phys. Lett. 1998, 73, 1089-1091.

32

Theodorou, C. G.; Fasarakis, N.; Hoffman, T.; Chiarella, T.; Ghibaudo, G.; Dimitriadis, C. A. Origin of the low-frequency noise in n-channel FinFETs. Solid State Electron. 2013, 82, 21-24.

33

Theodorou, C. G.; Ioannidis, E. G.; Andrieu, F.; Poiroux, T.; Faynot, O.; Dimitriadis, C. A.; Ghibaudo, G. Low-frequency noise sources in advanced UTBB FD-SOI MOSFETs. IEEE Trans. Electron Devices 2014, 61, 1161-1167.

Nano Research
Pages 809-814
Cite this article:
Reddy MSP, Im K-S, Lee J-H, et al. Trap and 1/f-noise effects at the surface and core of GaN nanowire gate-all-around FET structure. Nano Research, 2019, 12(4): 809-814. https://doi.org/10.1007/s12274-019-2292-0
Topics:

833

Views

19

Crossref

N/A

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 01 November 2018
Revised: 28 December 2018
Accepted: 03 January 2019
Published: 17 January 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return