Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Trap and 1/f-noise effects at the surface and core of GaN nanowire gate-all-around FET structure

Mallem Siva Pratap Reddy1Ki-Sik Im2()Jung-Hee Lee1()Raphael Caulmione3Sorin Cristoloveanu4
School of Electronics Engineering,Kyungpook National University,Daegu,41566,Republic of Korea;
Advanced Material Research Center,Kumoh National Institute of Technology,Gumi,39177,Republic of Korea;
SOITEC,Bernin,38190,France;
Institute of Microelectronics,Electromagnetism and Photonics, Grenoble Polytechnic Institute,Minatec, Grenoble,38016,France;
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Using capacitance, conductance and noise measurements, we investigate the trapping behavior at the surface and in the core of triangular-shaped one-dimensional (1D) array of GaN nanowire gate-all-around field effect transistor (GAA FET), fabricated via a top-down process. The surface traps in such a low dimensional device play a crucial role in determining the device performance. The estimated surface trap density rapidly decreases with increasing frequency, ranging from 6.07 × 1012 cm−2·eV−1 at 1 kHz to 1.90 × 1011 cm−2·eV−1 at 1 MHz, respectively. The noise results reveal that the power spectral density increases with gate voltage and clearly exhibits 1/f-noise signature in the accumulation region (Vgs > Vth = 3.4 V) for all frquencies. In the surface depletion region (1.5 V < Vgs < Vth), the device is governed by 1/f at lower frequencies and 1/f2 noise at frequencies higher than ~ 5 kHz. The 1/f2 noise characteristics is attributed to additional generation–recombination (G–R), mostly caused by the electron trapping/detrapping process through deep traps located in the surface depletion region of the nanowire. The cutoff frequency for the 1/f2 noise characteristics further shifts to lower frequency of 102–103 Hz when the device operates in deep-subthreshold region (Vgs < 1.5 V). In this regime, the electron trapping/detrapping process through deep traps expands into the totally depleted nanowire core and the G–R noise prevails in the entire nanowire channel.

References

1

Shirak, O.; Shtempluck, O.; Kotchtakov, V.; Bahir, G.; Yaish, Y. E. High performance horizontal gate-all-around silicon nanowire field-effect transistors. Nanotechnology 2012, 23, 395202.

2

Mirza, M. M.; Schupp, F. J.; Mol, J. A.; MacLaren, D. A.; Briggs, G. A. D.; Paul, D. J. One dimensional transport in silicon nanowire junction-less field effect transistors. Sci. Rep. 2017, 7, 3004.

3

Azize, M.; Hsu, A. L.; Saadat, O. I.; Smith, M.; Gao, X.; Guo, S. P.; Gradecak, S.; Palacios, T. High-electron-mobility transistors based on InAlN/GaN nanoribbons. IEEE Electron Device Lett. 2011, 32, 1680-1682.

4

Liu, S. H.; Cai, Y.; Gu, G. D.; Wang, J. Y.; Zeng, C. H.; Shi, W. H.; Feng, Z. H.; Qin, H.; Cheng, Z. Q.; Chen, K. J. et al. Enhancement-mode operation of nanochannel array (NCA) AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2012, 33, 354-356.

5

Ohi, K.; Asubar, J. T.; Nishiguchi, K.; Hashizume, T. Current stability in multi-mesa-channel AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2013, 60, 2997-3004.

6

Lu, B.; Matioli, E.; Palacios, T. Tri-gate normally-off GaN power MISFET. IEEE Electron Device Lett. 2012, 33, 360-362.

7

Im, K. S.; Kim, R. H.; Kim, K. W.; Kim, D. S.; Lee, C. S.; Cristoloveanu, S.; Lee, J. H. Normally off single-nanoribbon Al2O3/GaN MISFET. IEEE Electron Device Lett. 2013, 34, 27-29.

8

Takashima, S.; Li Z. D.; Chow, T. P. Sidewall dominated characteristics on fin-gate AlGaN/GAN MOS-channel-HEMTs. IEEE Trans. Electron Devices 2013, 60, 3025-3031.

9

Lee, D. S.; Wang, H.; Hsu, A.; Azize, M.; Laboutin, O.; Cao, Y.; Johnson, J. W.; Beam, E.; Ketterson, A.; Schuette, M. L. et al. Nanowire channel InAlN/GaN HEMTs with high linearity of gm and fT. IEEE Electron Device Lett. 2013, 34, 969-971.

10

Im, K. S.; Won, C. H.; Jo, Y. W.; Lee, J. H.; Bawedin, M.; Cristoloveanu, S.; Lee, J. H. High-performance GaN-based nanochannel finFETs with/without AlGaN/GaN heterostructure. IEEE Trans. Electron Devices 2013, 60, 3012-3018.

11

Im, K. S.; Son, D. H.; Ahn, H. K.; Bae, S. B.; Mun, J. K.; Nam, E. S.; Cristoloveanu, S.; Lee, J. H. Performance improvement of normally off AlGaN/GaN finFETs with fully gate-covered nanochannel. Solid State Electron 2013, 89, 124-127.

12

Jo, Y. W.; Son, D. H.; Won, C. H.; Im, K. S.; Seo, J. H.; Kang, I. M.; Lee, J. H. AlGaN/GaN finFET with extremely broad transconductance by side-wall wet etch. IEEE Electron Device Lett. 2015, 36, 1008-1010.

13

Im, K. S.; Sindhuri, V.; Jo, Y. W.; Son, D. H.; Lee, J. H.; Cristoloveanu, S.; Lee, J. H. Fabrication of AlGaN/GaN Ω-shaped nanowire fin-shaped FETs by a top-down approach. Appl. Phys. Express 2015, 8, 066501.

14

Zhuang, D.; Edgar, J. H. Wet etching of GaN, AlN, and SiC: A review. Mater. Sci. Eng. R 2005, 48, 1-46.

15

Reddy, C. V.; Balakrishna, K.; Okumura, H.; Yoshida, S. The origin of persistent photoconductivity and its relationship with yellow luminescence in molecular beam epitaxy grown undoped GaN. Appl. Phys. Lett. 1998, 73, 244.

16

Chen, H. M.; Chen, Y. F.; Lee, M. C.; Feng, M. S. Persistent photoconductivity in n-type GaN. J. Appl. Phys. 1997, 82, 899-901.

17

Hirsch, M. T.; Wolk, J. A.; Walukiewicz, W.; Haller, E. E. Persistent photoconductivity in n-type GaN. Appl. Phys. Lett. 1997, 71, 1098-1100.

18

Polenta, L.; Rossi, M.; Cavallini, A.; Calarco, R.; Marso, M.; Meijers, R.; Richter, T.; Stoica, T.; Lüth, H. Investigation on localized states in GaN nanowires. ACS Nano 2008, 2, 287-292.

19

Reddy, V. R.; Reddy, M. S.; Rao, P. K. Effect of rapid thermal annealing on deep level defects in the Si-doped GaN. Microelectron. Eng. 2010, 87, 117-121.

20

Huang, H. Y.; Chuang, C. H.; Shu, C. K.; Pan, Y. C.; Lee, W. H.; Chen, W. K.; Lee, M. C. Photoluminescence and photoluminescence excitation studies of as-grown and P-implanted GaN: On the nature of yellow luminescence. Appl. Phys. Lett. 2002, 80, 3349-3351.

21

Im, K. S.; Won, C. H.; Vodapally, S.; Caulmilone, R.; Cristoloveanu, S.; Kim, Y. T.; Lee, J. H. Fabrication of normally-off GaN nanowire gate-all-around FET with top-down approach. Appl. Phys. Lett. 2016, 109, 143106.

22

Wong, B. M.; Léonard, F.; Li, Q. M.; Wang, G. T. Nanoscale effects on heterojunction electron gases in GaN/AlGaN core/shell nanowires. Nano Lett. 2011, 11, 3074-3079.

23

Mastro, M. A.; Simpkins, B.; Wang, G. T.; Hite, J.; Eddy, C. R. Jr.; Kim, H. Y.; Ahn, J.; Kim, J. Polarization fields in Ⅲ-nitride nanowire devices. Nanotechnology 2010, 21, 145205.

24

Kang, H. S.; Siva Pratap Reddy, M.; Kim, D. S.; Kim, K. W.; Ha, J. B.; Lee, Y. S.; Choi, H. C.; Lee, J. H. Effect of oxygen species on the positive flat-band voltage shift in Al2O3/GaN metal-insulator-semiconductor capacitors with post-deposition annealing. J. Phys. D Appl. Phys. 2013, 46, 155101.

25

Bülbül, M. M.; Zeyrek, S. Frequency dependent capacitance and conductance-voltage characteristics of Al/Si3N4/p-Si(100) MIS diodes. Microelectron. Eng. 2006, 83, 2522-2526.

26

Taoka, N.; Kubo, T.; Yamada, T.; Egawa, T.; Shimizu, M. Understanding of frequency dispersion in CV curves of metal-oxide-semiconductor capacitor with wide-bandgap semiconductor. Microelectron. Eng. 2017, 178, 182-185.

27

Güçlü, Ç. Ş.; Özdemir, A. F.; Kökce, A.; Altindal, Ş. Frequency and voltage-dependent dielectric properties and AC electrical conductivity of (Au/Ti)/ Al2O3/n-GaAs with thin Al2O3 interfacial layer at room temperature. Acta Phys. Pol. A 2016, 130, 325-330.

28

Nicollian, E. H.; Brews, J. R. MOS (Metal Oxide Semiconductor) Physics and Technology; John Wiley & Sons: New York, 1982.

29

Hill, W. A.; Coleman, C. C. A single-frequency approximation for interface-state density determination. Solid State Electron. 1980, 23, 987-993.

30

Balandin, A.; Cai, S.; Li, R.; Wang, K. L.; Rao, V. R.; Viswanathan, C. R. Flicker noise in GaN/Al/sub 0.15/Ga/sub 0.85/N doped channel heterostructure field effect transistors. IEEE Electron Device Lett. 1998, 19, 475-477.

31

Levinshtein, M. E.; Rumyantsev, S. L.; Gaska, R.; Yang, J. W.; Shur, M. S. AlGaN/GaN high electron mobility field effect transistors with low 1/f noise. Appl. Phys. Lett. 1998, 73, 1089-1091.

32

Theodorou, C. G.; Fasarakis, N.; Hoffman, T.; Chiarella, T.; Ghibaudo, G.; Dimitriadis, C. A. Origin of the low-frequency noise in n-channel FinFETs. Solid State Electron. 2013, 82, 21-24.

33

Theodorou, C. G.; Ioannidis, E. G.; Andrieu, F.; Poiroux, T.; Faynot, O.; Dimitriadis, C. A.; Ghibaudo, G. Low-frequency noise sources in advanced UTBB FD-SOI MOSFETs. IEEE Trans. Electron Devices 2014, 61, 1161-1167.

Nano Research
Pages 809-814
Cite this article:
Reddy MSP, Im K-S, Lee J-H, et al. Trap and 1/f-noise effects at the surface and core of GaN nanowire gate-all-around FET structure. Nano Research, 2019, 12(4): 809-814. https://doi.org/10.1007/s12274-019-2292-0
Topics:
Metrics & Citations  
Article History
Copyright
Return