AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Conductive polymers for stretchable supercapacitors

Yaqun Wang1( )Yu Ding2Xuelin Guo2Guihua Yu2( )
Country College of Electrical Engineering and AutomationShandong University of Science and TechnologyQingdao266590China
Materials Science and Engineering Program and Department of Mechanical EngineeringThe University of Texas at AustinAustinTX78712USA
Show Author Information

Graphical Abstract

Abstract

Stretchable energy storage devices, maintaining the capability of steady operation under large mechanical strain, have become increasing more important with the development of stretchable electronic devices. Stretchable supercapacitors (SSCs), with high power density, modest energy density, and superior mechanical properties are regarded as one of the most promising power supplies to stretchable electronic devices. Conductive polymers, such as polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and poly(3, 4-ehtylenedioxythiophene) (PEDOT), are among the well-studied electroactive materials for the construction of SSCs because of their high specific theoretical capacity, excellent electrochemical activity, light weight, and high flexibility. Much effort has been devoted to developing stretchable, conductive polymer-based SSCs with different device structures, such as sandwich-type and fiber-shaped type SSCs. This review summarizes the material and structural design for conductive polymer-based SSCs and discusses the challenge and important directions in this emerging field.

References

1

Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.

2

Yu, G. H.; Xie, X.; Pan, L. J.; Bao, Z. N.; Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013, 2, 213-234.

3

Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 2017, 29, 1606425.

4

Yun, J.; Song, C.; Lee, H.; Park, H.; Jeong, Y. R.; Kim, J. W.; Jin, S. W.; Oh, S. Y.; Sun, L. F.; Zi, G. et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 2018, 49, 644-654.

5

Souri, H.; Bhattacharyya, D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS Appl. Mater. Interfaces 2018, 10, 20845-20853.

6

Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151-2157.

7

Gong, S.; Cheng, W. L. Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater. 2017, 7, 1700648.

8

Li, H. S.; Ding, Y.; Ha, H.; Shi, Y.; Peng, L. L.; Zhang, X. G.; Ellison, C. J.; Yu, G. H. An all-stretchable-component sodium-ion full battery. Adv. Mater. 2017, 29, 1700898.

9

An, T. C.; Cheng, W. L. Recent progress in stretchable supercapacitors. J. Mater. Chem. A 2018, 6, 15478-15494.

10

Shang, Y. Y.; Wang, C. H.; He, X. D.; Li, J. J.; Peng, Q. Y.; Shi, E. Z.; Wang, R. G.; Du, S. Y.; Cao, A. Y.; Li, Y. B. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions. Nano Energy 2015, 12, 401-409.

11

Yun, T. G.; Hwang, B. L.; Kim, D.; Hyun, S.; Han, S. M. Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability. ACS Appl. Mater. Interfaces 2015, 7, 9228-9234.

12

Choi, C.; Lee, J. M.; Kim, S. H.; Kim, S. J.; Di, J. T.; Baughman, R. H. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 2016, 16, 7677-7684.

13

Kim, K. J.; Lee, J. A.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Highly stretchable hybrid nanomembrane supercapacitors. RSC Adv. 2016, 6, 24756-24759.

14

Dong, K.; Wang, Y. C.; Deng, J. N.; Dai, Y. J.; Zhang, S. L.; Zou, H. Y.; Gu, B. H.; Sun, B. Z.; Wang, Z. L. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 2017, 11, 9490-9499.

15

Gilshteyn, E. P.; Amanbayev, D.; Anisimov, A. S.; Kallio, T.; Nasibulin, A. G. All-nanotube stretchable supercapacitor with low equivalent series resistance. Sci. Rep. 2017, 7, 17449.

16

Zhu, Y. P.; Li, N.; Lv, T.; Yao, Y.; Peng, H. N.; Shi, J.; Cao, S. K.; Chen, T. Ag-doped PEDOT: PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. J. Mater. Chem. A 2018, 6, 941-947.

17

Guo, Y.; Zheng, K. Q.; Wan, P. B. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small 2018, 14, 1704497.

18

Zhang, N.; Zhou, W. Y.; Zhang, Q.; Luan, P. S.; Cai, L.; Yang, F.; Zhang, X.; Fan, Q. X.; Zhou, W. B.; Xiao, Z. J. et al. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array. Nanoscale 2015, 7, 12492-12497.

19

Guo, F. M.; Xu, R. Q.; Cui, X.; Zhang, L.; Wang, K. L.; Yao, Y. W.; Wei, J. Q. High performance of stretchable carbon nanotube-polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. J. Mater. Chem. A 2016, 4, 9311-9318.

20

Pu, J.; Wang, X. H.; Xu, R. X.; Komvopoulos, K. Highly stretchable microsupercapacitor arrays with honeycomb structures for integrated wearable electronic systems. ACS Nano 2016, 10, 9306-9315.

21

Choi, C.; Kim, J. H.; Sim, H. J.; Di, J. T.; Baughman, R. H.; Kim, S. J. Microscopically buckled and macroscopically coiled fibers for ultra-stretchable supercapacitors. Adv. Energy Mater. 2017, 7, 1602021.

22

Wang, X.; Yang, C. Y.; Jin, J.; Li, X. W.; Cheng, Q. L.; Wang, G. C. High-performance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs@conductive polymer composite electrodes. J. Mater. Chem. A 2018, 6, 4432-4442.

23

Lota, K.; Khomenko, V.; Frackowiak, E. Capacitance properties of poly(3, 4-ethylenedioxythiophene)/carbon nanotubes composites. J. Phys. Chem. Solids 2004, 65, 295-301.

24

Shi, Y.; Peng, L. L.; Ding, Y.; Zhao, Y.; Yu, G. H. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684-6696.

25

Shi, Y.; Peng, L. L.; Yu, G. H. Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale 2015, 7, 12796-12806.

26

Xie, Y. Z.; Liu, Y.; Zhao, Y. D.; Tsang, Y. H.; Lau, S. P.; Huang, H. T.; Chai, Y. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2014, 2, 9142-9149.

27

Jin, H. Y.; Zhou, L. M.; Mak, C. L.; Huang, H. T.; Tang, W. M.; Chan, H. L. W. High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@polyanilne and functionalized CFT electrodes for wearable/stretchable electronics. Nano Energy 2015, 11, 662-670.

28

Zang, X. B.; Zhu, M.; Li, X.; Li, X. M.; Zhen, Z.; Lao, J. C.; Wang, K. L.; Kang, F. Y.; Wei, B. Q.; Zhu, H. W. Dynamically stretchable supercapacitors based on graphene woven fabric electrodes. Nano Energy 2015, 15, 83-91.

29

Guo, K.; Wang, X. F.; Hu, L. T.; Zhai, T. Y.; Li, H. Q.; Yu, N. Highly stretchable waterproof fiber asymmetric supercapacitors in an integrated structure. ACS Appl. Mater. Interfaces 2018, 10, 19820-19827.

30

Li, P. P.; Jin, Z. Y.; Peng, L. L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. H. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater. 2018, 30, 1800124.

31

Qi, R. J.; Nie, J. H.; Liu, M. Y.; Xia, M. Y.; Lu, X. M. Stretchable V2O5/PEDOT supercapacitors: A modular fabrication process and charging with triboelectric nanogenerators. Nanoscale 2018, 10, 7719-7725.

32

Wang, S. L.; Liu, N. S.; Su, J.; Li, L. Y.; Long, F.; Zou, Z. G.; Jiang, X. L.; Gao, Y. H. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 2017, 11, 2066-2074.

33

Nyström, G.; Razaq, A.; Strømme, M.; Nyholm, L.; Mihranyan, A. Ultrafast all-polymer paper-based batteries. Nano Lett. 2009, 9, 3635-3639.

34

Liu, L.; Tian, Q. Y.; Yao, W. J.; Li, M. X.; Li, Y. W.; Wu, W. All-printed ultraflexible and stretchable asymmetric in-plane solid-state supercapacitors (ASCs) for wearable electronics. J. Power Sources 2018, 397, 59-67.

35

Zhao, X.; Wang, K. Q.; Li, B.; Wang, C.; Ding, Y. Q.; Li, C. Q.; Mao, L. Q.; Lin, Y. Q. Fabrication of a flexible and stretchable nanostructured gold electrode using a facile ultraviolet-irradiation approach for the detection of nitric oxide released from cells. Anal. Chem. 2018, 90, 7158-7163.

36

An, T. C.; Ling, Y. Z.; Gong, S.; Zhu, B. W.; Zhao, Y. M.; Dong, D. S.; Yap, L. W.; Wang, Y.; Cheng, W. L. A wearable second skin-like multifunctional supercapacitor with vertical gold nanowires and electrochromic polyaniline. Adv. Mater. Technol., in press, DOI: 10.1002/admt.201800473.

37

Wen, L.; Li, F.; Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306-4337.

38

Huang, Y.; Zhong, M.; Shi, F. K.; Liu, X. Y.; Tang, Z. J.; Wang, Y. K.; Huang, Y.; Hou, H. Q.; Xie, X. M.; Zhi, C. Y. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem. , Int. Ed. 2017, 56, 9141-9145.

39

Cuentas-Gallegos, A. K.; Lira-Cantú, M.; Casañ-Pastor, N.; Gómez-Romero, P. Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv. Funct. Mater. 2005, 15, 1125-1133.

40

Park, J. H.; Ko, J. M.; Park, O. O.; Kim, D. W. Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J. Power Sources 2002, 105, 20-25.

41

Bhat, D. K.; Kumar, M. S. N and P doped poly(3, 4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors. J. Mater. Sci. 2007, 42, 8158-8162.

42

Zhao, C.; Shu, K. W.; Wang, C. Y.; Gambhir, S.; Wallace, G. G. Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. Electrochim. Acta 2015, 172, 12-19.

43

Sun, J. F.; Huang, Y.; Fu, C. X.; Wang, Z. Y.; Huang, Y.; Zhu, M. S.; Zhi, C. Y.; Hu, H. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 2016, 27, 230-237.

44

Xu, J.; Ding, J. N.; Zhou, X. S.; Zhang, Y.; Zhu, W. J.; Liu, Z. F.; Ge, S. H.; Yuan, N. Y.; Fang, S. L.; Baughman, R. H. Enhanced rate performance of flexible and stretchable linear supercapacitors based on polyaniline@ Au@carbon nanotube with ultrafast axial electron transport. J. Power Sources 2017, 340, 302-308.

45

Huang, Y.; Tao, J. Y.; Meng, W. J.; Zhu, M. S.; Huang, Y.; Fu, Y. Q.; Gao, Y. H.; Zhi, C. Y. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518-525.

46

Zhao, F.; Shi, Y.; Pan, L. J.; Yu, G. H. Multifunctional nanostructured conductive polymer gels: Synthesis, properties, and applications. Acc. Chem. Res. 2017, 50, 1734-1743.

47

Shi, Y.; Yu, G. H. Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem. Mater. 2016, 28, 2466-2477.

48

Wang, Y. Q.; Shi, Y.; Pan, L. J.; Ding, Y.; Zhao, Y.; Li, Y.; Shi, Y.; Yu, G. H. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett. 2015, 15, 7736-7741.

49

Pan, L. J.; Yu, G. H.; Zhai, D. Y.; Lee, H. R.; Zhao, W. T.; Liu, N.; Wang, H. L.; Tee, B. C. K.; Shi, Y.; Cui, Y. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287-9292.

50

Zhao, F.; Bae, J.; Zhou, X. Y.; Guo, Y. H.; Yu, G. H. Nanostructured functional hydrogels as an emerging platform for advanced energy technologies. Adv. Mater. 2018, 30, 1801796.

51

Peng, L. L.; Zhu, Y.; Li, H. S.; Yu, G. H. Chemically integrated inorganic-graphene two-dimensional hybrid materials for flexible energy storage devices. Small 2016, 12, 6183-6199.

52

Shi, Y.; Zhang, J.; Pan, L. J.; Shi, Y.; Yu, G. H. Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today 2016, 11, 738-762.

53

Ren, J.; Ren, R. P.; Lv, Y. K. Stretchable all-solid-state supercapacitors based on highly conductive polypyrrole-coated graphene foam. Chem. Eng. J. 2018, 349, 111-118.

54

Ren, D. Y.; Dong, L. B.; Wang, J. J.; Ma, X. P.; Xu, C. J.; Kang, F. Y. Facile preparation of high-performance stretchable fiber-like electrodes and supercapacitors. Chemistryselect 2018, 3, 4179-4184.

55

Zhang, Z. T.; Wang, L.; Li, Y. M.; Wang, Y. H.; Zhang, J.; Guan, G. Z.; Pan, Z. Y.; Zheng, G. F.; Peng, H. S. Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor. Adv. Energy Mater. 2017, 7, 1601814.

56

Li, K.; Huang, Y. S.; Liu, J. J.; Sarfraz, M.; Agboola, P. O.; Shakir, I.; Xu, Y. X. A three-dimensional graphene framework-enabled high-performance stretchable asymmetric supercapacitor. J. Mater. Chem. A 2018, 6, 1802-1808.

57

Zhang, Z. T.; Deng, J.; Li, X. Y.; Yang, Z. B.; He, S. S.; Chen, X. L.; Guan, G. Z.; Ren, J.; Peng, H. S. Superelastic supercapacitors with high performances during stretching. Adv. Mater. 2015, 27, 356-362.

58

Yu, J. L.; Lu, W. B.; Smith, J. P.; Booksh, K. S.; Meng, L. H.; Huang, Y. D.; Li, Q. W.; Byun, J. H.; Oh, Y.; Yan, Y. S. A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv. Energy Mater. 2017, 7, 1600976.

59

Zhang, Q. C.; Sun, J.; Pan, Z. H.; Zhang, J.; Zhao, J. X.; Wang, X. N.; Zhang, C. X.; Yao, Y. G.; Lu, W. B.; Li, Q. W. et al. Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 2017, 39, 219-228.

60

Moussa, M.; Shi, G.; Wu, H.; Zhao, Z. H.; Voelcker, N. H.; Losic, D.; Ma, J. Development of flexible supercapacitors using an inexpensive graphene/PEDOT/MnO2 sponge composite. Materials & Design 2017, 125, 1-10.

61

Cheng, X. L.; Zhang, J.; Ren, J.; Liu, N.; Chen, P. N.; Zhang, Y.; Deng, J.; Wang, Y. G.; Peng, H. S. Design of a hierarchical ternary hybrid for a fiber-shaped asymmetric supercapacitor with high volumetric energy density. J. Phys. Chem. C 2016, 120, 9685-9691.

62

Wu, H.; Zhang, Y. N.; Yuan, W. Y.; Zhao, Y. X.; Luo, S. H.; Yuan, X. W.; Zheng, L. X.; Cheng, L. F. Highly flexible, foldable and stretchable Ni-Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high-performance all-solid-state supercapacitors. J. Mater. Chem. A 2018, 6, 16617-16626.

63

Chu, X.; Zhang, H. T.; Su, H.; Liu, F. Y.; Gu, B. N.; Huang, H. C.; Zhang, H. P.; Deng, W.; Zheng, X. T.; Yang, W. Q. A novel stretchable supercapacitor electrode with high linear capacitance. Chem. Eng. J. 2018, 349, 168-175.

64

Zhao, Y.; Chen, S.; Hu, J.; Yu, J. L.; Feng, G. C.; Yang, B.; Li, C. H.; Zhao, N.; Zhu, C. Z.; Xu, J. Microgel-enhanced double network hydrogel electrode with high conductivity and stability for intrinsically stretchable and flexible all-gel-state supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 19323-19330.

65

Chen, T.; Hao, R.; Peng, H. S.; Dai, L. M. High-performance, stretchable, wire-shaped supercapacitors. Angew. Chem. , Int. Ed. 2015, 54, 618-622.

66

Shi, M. J.; Yang, C.; Song, X. F.; Liu, J.; Zhao, L. P.; Zhang, P.; Gao, L. Stretchable wire-shaped supercapacitors with high energy density for size-adjustable wearable electronics. Chem. Eng. J. 2017, 322, 538-545.

67

Wang, Z. P.; Cheng, J. L.; Guan, Q.; Huang, H.; Li, Y. C.; Zhou, J. W.; Ni, W.; Wang, B.; He, S. S.; Peng, H. S. All-in-one fiber for stretchable fiber-shaped tandem supercapacitors. Nano Energy 2018, 45, 210-219.

68

Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.

69

Zhou, G. H.; Kim, N. R.; Chun, S. E.; Lee, W.; Um, M. K.; Chou, T. W.; Islam, M. F.; Byun, J. H.; Oh, Y. Highly porous and easy shapeable poly-dopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors. Carbon 2018, 130, 137-144.

70

Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Wang, Z. F.; Xue, Q.; Xie, X. M.; Zhi, C. Y. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015, 6, 10310.

71

Lee, H.; Hong, S.; Lee, J.; Suh, Y. D.; Kwon, J.; Moon, H.; Kim, H.; Yeo, J.; Ko, S. H. Highly stretchable and transparent supercapacitor by Ag-Au core-shell nanowire network with high electrochemical stability. ACS Appl. Mater. Interfaces 2016, 8, 15449-15458.

72

Moon, H.; Lee, H.; Kwon, J.; Suh, Y. D.; Kim, D. H.; Ha, I.; Yeo, J.; Hong, S.; Ko, S. H. Ag/Au/polypyrrole core-shell nanowire network for transparent, stretchable and flexible supercapacitor in wearable energy devices. Sci. Rep. 2017, 7, 41981.

73

Hao, G. P.; Hippauf, F.; Oschatz, M.; Wisser, F. M.; Leifert, A.; Nickel, W.; Mohamed-Noriega, N.; Zheng, Z. K.; Kaskel, S. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors. ACS Nano 2014, 8, 7138-7146.

74

Zhang, N.; Luan, P. S.; Zhou, W. Y.; Zhang, Q.; Cai, L.; Zhang, X.; Zhou, W. B.; Fan, Q. X.; Yang, F.; Zhao, D. et al. Highly stretchable pseudocapacitors based on buckled reticulate hybrid electrodes. Nano Res. 2014, 7, 1680-1690.

75

Lv, Z. S.; Tang, Y. X.; Zhu, Z. Q.; Wei, J. Q.; Li, W. L.; Xia, H. R.; Jiang, Y.; Liu, Z. Y.; Luo, Y. F.; Ge, X. et al. Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance. Adv. Mater. 2018, 30, 1805468.

76

Chen, C.; Cao, J.; Wang, X. Y.; Lu, Q. Q.; Han, M. M.; Wang, Q. R.; Dai, H. T.; Niu, Z. Q.; Chen, J.; Xie, S. S. Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector. Nano Energy 2017, 42, 187-194.

77

Li, L.; Lou, Z.; Han, W.; Chen, D.; Jiang, K.; Shen, G. Z. Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv. Mater. Technol. 2017, 2, 1600282.

78

Lim, Y.; Yoon, J.; Yun, J.; Kim, D.; Hong, S. Y.; Lee, S. J.; Zi, G.; Ha, J. S. Correction to biaxially stretchable, integrated array of high performance microsupercapacitors. ACS Nano 2015, 9, 6634.

79

Hu, R. F.; Zheng, J. P. Preparation of high strain porous polyvinyl alcohol/polyaniline composite and its applications in all-solid-state supercapacitor. J. Power Sources 2017, 364, 200-207.

80

Tang, Q. Q.; Chen, M. M.; Yang, C. Y.; Wang, W. Q.; Bao, H.; Wang, G. C. Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@polypyrrole anode. ACS Appl. Mater. Interfaces 2015, 7, 15303-15313.

81

Shi, Y. H.; Zhang, Y.; Jia, L. M.; Zhang, Q.; Xu, X. H. Stretchable and self-healing integrated all-gel-state supercapacitors enabled by a notch-insensitive supramolecular hydrogel electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 36028-36036.

Nano Research
Pages 1978-1987
Cite this article:
Wang Y, Ding Y, Guo X, et al. Conductive polymers for stretchable supercapacitors. Nano Research, 2019, 12(9): 1978-1987. https://doi.org/10.1007/s12274-019-2296-9
Topics:
Part of a topical collection:

1157

Views

270

Crossref

N/A

Web of Science

279

Scopus

14

CSCD

Altmetrics

Received: 26 November 2018
Revised: 31 December 2018
Accepted: 07 January 2019
Published: 25 January 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return