AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries

Xintao Zuo1Mengmeng Zhen1,2( )Cheng Wang1( )
Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy,Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology,Tianjin,300071,China;
Tianjin Key Laboratory of Clean Energy and Pollution Control,School of Energy and Environmental Engineering, Hebei University of Technology,Tianjin,300401,China;
Show Author Information

Graphical Abstract

Abstract

Lithium-sulfur batteries (LSBs) have been regarded as one of the most promising energy storage systems to break through the upper limit of lithium-ion batteries. However, the rampant diffusions of soluble lithium polysulfides (LiPSs) in the electrolyte induced the shuttle effect between anode and cathode, resulting in low sulfur utilization, low energy efficiency and short cycling life. Herein, we prove the rational design and construction of Ni nanoparticles filled in vertically grown N-doped bamboo-like carbon nanotubes (CNTs) on graphene nanosheets (Ni@NG-CNTs) as efficient polysulfide barrier for high-performance LSBs. The unique design integrates graphene nanosheets and CNTs into hierarchical architectures with one-dimensional (1D) CNTs, two-dimensional (2D) ultrathin nanosheets and abundant carbon nanocages. This design provides large surface area for lithium polysulfides (LiPSs) adsorption, accelerates electron transport and enhances electrochemical redox of LiPSs. Benefiting from the unique structural features, the LSBs with the Ni@NG-CNTs as polysulfide barrier keep high reversible specific capacities of 309.1 and 265.0 mAh·g−1 at 5 and 10 C rates after 500 cycles. This work provides a new strategy for constructing self-assembled hybrids of CNTs and graphene nanosheets with abundant carbon nanocages for high-performance LSBs.

Electronic Supplementary Material

Download File(s)
12274_2019_2298_MOESM1_ESM.pdf (4.8 MB)

References

1

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

2

Jiang, J.; Zhu, J. H.; Ai, W.; Wang, X. L.; Wang, Y. L.; Zou, C. J.; Huang, W.; Yu, T. Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells. Nat. Commun. 2015, 6, 8622.

3

Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

4

Fang, R. P.; Zhao, S. Y.; Pei, S. F.; Cheng, Y. X.; Hou, P. X.; Liu, M.; Cheng, H. M.; Liu, C.; Li, F. An integrated electrode/separator with nitrogen and nickel functionalized carbon hybrids for advanced lithium/polysulfide batteries. Carbon 2016, 109, 719–726.

5

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

6

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon- sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

7

Luo, L.; Chung, S. H.; Manthiram, A. A three-dimensional self-assembled SnS2-nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 7659–7667.

8

Zhu, S. Y.; Wang, Y. Q.; Jiang, J. C.; Yan, X.; Sun, D. Y.; Jin, Y. C.; Nan, C. W.; Munakata, H.; Kanamura, K. Good low-temperature properties of nitrogen-enriched porous carbon as sulfur hosts for high-performance Li-S batteries. ACS Appl. Mater. Interfaces 2016, 8, 17253–17259.

9

Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 2016, 1, 16094.

10

Cao, J.; Chen, C.; Zhao, Q.; Zhang, N.; Lu, Q. Q.; Wang, X. Y.; Niu, Z. Q.; Chen, J. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations. Adv. Mater. 2016, 28, 9629–9636.

11

Gnana Kumar, G.; Chung, S. H.; Raj Kumar, T.; Manthiram, A. Three-dimensional graphene-carbon nanotube-Ni hierarchical architecture as a polysulfide trap for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 20627–20634.

12

Chung, S. H.; Chang, C. H.; Manthiram, A. A core-shell electrode for dynamically and statically stable Li–S battery chemistry. Energy Environ. Sci. 2016, 9, 3188–3200.

13

Chen, C. Y.; Peng, H. J.; Hou, T. Z.; Zhai, P. Y.; Li, B. Q.; Tang, C.; Zhu, W. C.; Huang, J. Q.; Zhang, Q. A quinonoid-imine-enriched nanostructured polymer mediator for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606802.

14

Cui, Z. M.; Zu, C. X.; Zhou, W. D.; Manthiram, A.; Goodenough, J. B. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 2016, 28, 6926–6931.

15

Wang, L.; Yang, Z.; Nie, H. G.; Gu, C. C.; Hua, W. X.; Xu, X. J.; Chen, X. A.; Chen, Y.; Huang, S. M. A lightweight multifunctional interlayer of sulfur-nitrogen dual-doped graphene for ultrafast, long-life lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 15343–15352.

16

Ghazi, Z. A.; He, X.; Khattak, A. M.; Khan, N. A.; Liang, B.; Iqbal, A.; Wang, J. X.; Sin, H.; Li, L. S.; Tang, Z. Y. MoS2/Celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606817.

17

Li, F.; Kaiser, M. R.; Ma, J. M.; Guo, Z. P.; Liu, H. K.; Wang, J. Z. Free- standing sulfur-polypyrrole cathode in conjunction with polypyrrole-coated separator for flexible Li-S batteries. Energy Storage Mater. 2018, 13, 312–322.

18

Li, J.; Huang, Y. D.; Zhang, S.; Jia, W.; Wang, X. C.; Guo, Y.; Jia, D. Z.; Wang, L. S. Decoration of silica nanoparticles on polypropylene separator for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 7499–7504.

19

Song, J. J.; Su, D. W.; Xie, X. Q.; Guo, X.; Bao, W. Z.; Shao, G. J.; Wang, G. X. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 29427–29433.

20

Balach, J.; Singh, H. K.; Gomoll, S.; Jaumann, T.; Klose, M.; Oswald, S.; Richter, M.; Eckert, J.; Giebeler, L. Synergistically enhanced polysulfide chemisorption using a flexible hybrid separator with N and S dual-doped mesoporous carbon coating for advanced lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 14586–14595.

21

Su, D. W.; Cortie, M.; Fan, H. B.; Wang, G. X. Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1700587.

22

Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.

23

Jin, F. Y.; Xiao, S.; Lu, L. J.; Wang, Y. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries. Nano Lett. 2016, 16, 440–447.

24

Wang, Y.; Kong, D. Z.; Shi, W. H.; Liu, B.; Sim, G. J.; Ge, Q.; Yang, H. Y. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv. Energy Mater. 2016, 6, 1601057.

25

Su, Y. S.; Manthiram, A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. 2012, 48, 8817–8819.

26

Pang, Y.; Wei, J. S.; Wang, Y. G.; Xia, Y. Y. Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702288.

27

Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphene- carbon nanotube hybrids from prussian blue for lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.

28

Liang, J.; Yin, L. C.; Tang, X. N.; Yang, H. C.; Yan, W. S.; Song, L.; Cheng, H. M.; Li, F. Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 25193–25201.

29

Hu, G. J.; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603–1609.

30

Zhao, M. Q.; Liu, X. F.; Zhang, Q.; Tian, G. L.; Huang, J. Q.; Zhu, W. C.; Wei, F. Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li-S batteries. ACS Nano 2012, 6, 10759–10769.

31

Balamurugan, J.; Thanh, T. D.; Kim, N. H.; Lee, J. H. Facile synthesis of 3D hierarchical N-doped graphene nanosheet/cobalt encapsulated carbon nanotubes for high energy density asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 9555–9565.

32

Su, L. W.; Zhou, Z.; Shen, P. W. Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: Origin of Li storage capacity. J. Phys. Chem. C 2012, 116, 23974–23980.

33

Yoo, J.; Cho, S. J.; Jung, G. Y.; Kim, S. H.; Choi, K. H.; Kim, J. H.; Lee, C. K.; Kwak, S. K.; Lee, S. Y. COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries. Nano Lett. 2016, 16, 3292–3300.

34

Xu, J. Q.; Zhou, K.; Chen, F.; Chen, W.; Wei, X. F.; Liu, X. W.; Liu, J. H. Natural integrated carbon architecture for rechargeable lithium–sulfur batteries. ACS Sustain. Chem. Eng. 2016, 4, 666–670.

35

Yang, J. Q.; Zhou, X. L.; Wu, D. H.; Zhao, X. D.; Zhou, Z. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 2017, 29, 1604108.

36

Yuan, X. Q.; Wu, L. S.; He, X. L.; Zeinu, K.; Huang, L.; Zhu, X. L.; Hou, H. J.; Liu, B. C.; Hu, J. P.; Yang, J. K. Separator modified with N, S co-doped mesoporous carbon using egg shell as template for high performance lithium-sulfur batteries. Chem. Eng. J. 2017, 320, 178–188.

37

Zhang, W. L.; Xu, C.; Ma, C. Q.; Li, G. X.; Wang, Y. Z.; Zhang, K. Y.; Li, F.; Liu, C.; Cheng, H. M.; Du, Y. W. et al. Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors. Adv. Mater. 2017, 29, 1701677.

38

Anantharaj, S.; Karthick, K.; Venkatesh, M.; Simha, T. V. S. V.; Salunke, A. S.; Ma, L.; Liang, H.; Kundu, S. Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy 2017, 39, 30–43.

39

Chen, G. P.; Song, X.; Wang, S. Q.; Wang, Y.; Gao, T.; Ding, L. X.; Wang, H. H. A multifunctional separator modified with cobalt and nitrogen co-doped porous carbon nanofibers for Li-S batteries. J. Membr. Sci. 2018, 548, 247–253.

40

Song, X.; Wang, S. Q.; Chen, G. P.; Gao, T.; Bao, Y.; Ding, L. X.; Wang, H. H. Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries. Chem. Eng. J. 2018, 333, 564–571.

41

Zeng, P.; Huang, L. W.; Zhang, X. L.; Zhang, R. X.; Wu, L.; Chen, Y. G. Long-life and high-areal-capacity lithium-sulfur batteries realized by a honeycomb-like N, P dual-doped carbon modified separator. Chem. Eng. J. 2018, 349, 327–337.

42

Chen, X. X.; Ding, X. Y.; Wang, C. S.; Feng, Z. Y.; Xu, L. Q.; Gao, X.; Zhai, Y. J.; Wang, D. B. A multi-shelled CoP nanosphere modified separator for highly efficient Li-S batteries. Nanoscale 2018, 10, 13694–13701.

43

Ding, H. B.; Zhang, Q. F.; Liu, Z. M.; Wang, J.; Ma, R. F.; Fan, L.; Wang, T.; Zhao, J. G.; Ge, J. M.; Lu, X. L. et al. TiO2 quantum dots decorated multi-walled carbon nanotubes as the multifunctional separator for highly stable lithium sulfur batteries. Electrochim. Acta. 2018, 284, 314–320.

44

Yang, Y. F.; Zhang, J. P. Highly stable lithium-sulfur batteries based on laponite nanosheet-coated celgard separators. Adv. Energy Mater. 2018, 8, 1801778.

45

Jiang, K.; Gao, S.; Wang, R. X.; Jiang, M.; Han, J.; Gu, T. T.; Liu, M. Y.; Cheng, S. J.; Wang, K. L. Lithium sulfonate/carboxylate-anchored polyvinyl alcohol separators for lithium sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 18310–18315.

46

Song, X.; Chen, G. P.; Wang, S. Q.; Huang, Y. P.; Jiang, Z. Y.; Ding, L. X.; Wang, H. H. Self-assembled close-packed MnO2 nanoparticles anchored on a polyethylene separator for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 26274–26282.

47

Wu, F.; Zhao, S. Y.; Chen, L.; Lu, Y.; Su, Y. F.; Jia, Y. N.; Bao, L. Y.; Wang, J.; Chen, S.; Chen, R. J. Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries. Energy Storage Mater. 2018, 14, 383–391.

48

Zhai, P. Y.; Peng, H. J.; Cheng, X. B.; Zhu, L.; Huang, J. Q.; Zhu, W. C.; Zhang, Q. Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries. Energy Storage Mater. 2017, 7, 56–63.

49

Li, H. P.; Sun, L. C.; Zhang, Y. G.; Tan, T. Z.; Wang, G. K.; Bakenov, Z. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J. Energy Chem. 2017, 26, 1276–1281.

50

Huang, J. Q.; Zhuang, T. Z.; Zhang, Q.; Peng, H. J.; Chen, C. M.; Wei, F. Permselective graphene oxide membrane for highly stable and anti-self- discharge lithium-sulfur batteries. ACS Nano 2015, 9, 3002–3011.

51

Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.

Nano Research
Pages 829-836
Cite this article:
Zuo X, Zhen M, Wang C. Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Research, 2019, 12(4): 829-836. https://doi.org/10.1007/s12274-019-2298-7
Topics:

815

Views

59

Crossref

N/A

Web of Science

57

Scopus

8

CSCD

Altmetrics

Received: 12 November 2018
Revised: 21 December 2018
Accepted: 11 January 2019
Published: 25 January 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return