AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications

Jiahui Zhu1Zhi Chen1Lin Jia2Yuqi Lu1Xiangru Wei1Xiaoning Wang1Winston Duo Wu1Na Han2Yanguang Li2( )Zhangxiong Wu1( )
Suzhou Key Laboratory of Green Chemical EngineeringSchool of Chemical and Environmental EngineeringCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
Show Author Information

Graphical Abstract

Abstract

Transition metal sulfides (TMSs) have a wide range of applications owing to their intriguing properties. Significant efforts have been devoted to nanostructuring TMSs to enhance their properties and performance, still there is a high need in general synthesis of TMS nanostructures. Herein, for the first time, a simple solvent free reactive nanocasting approach that integrates solid precursor loading, in-situ sulfuration and carbonization into a single heating step is developed for the universal synthesis of ordered mesoporous TMS@N-doped carbon composites (denoted as OM-TMS@NCs) with methionine (Met) and metal chlorides as the precursors and the mesoporous silica (SBA-15) as the hard template. A series of OM-TMS@NCs with a hexagonal mesostructure, ultra-high surface areas (430–754 m2·g-1), large pore volumes (0.85–1.32 cm3·g-1), and unique TMS stoichiometries, including MoS2, Fe7S8, Co9S8, NiS, Cu7S4 and ZnS, are obtained. Two distinct structure configurations, namely, highly dispersed ultrathin TMS nanosheets within NCs and TMS@NC co-nanowire arrays, can be obtained depending on different metals. The structure evolution of the OM-TMS@NCs over the solvent-free nanocasting process is studied in detail for a deep understanding of the synthesis. As demonstrations, these materials are promising for electrocatalytic hydrogen evolution reaction and lithium ion storage with high performances.

Electronic Supplementary Material

Download File(s)
12274_2019_2299_MOESM1_ESM.pdf (6.4 MB)

References

1

Lai, C. H.; Lu, M. Y.; Chen, L. J. Metal sulfide nanostructures: Synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 2012, 22, 19-30.

2

Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555.

3

Beinert, H.; Holm, R. H.; Munck, E. Iron-sulfur clusters: Nature's modular, multipurpose structures. Science 1997, 277, 653-659.

4

Harris, S.; Chianelli, R. R. Catalysis by transition metal sulfides: The relation between calculated electronic trends and HDS activity. J. Catal. 1984, 86, 400-412.

5

Gao, M. R.; Xu, Y. F.; Jiang, J.; Yu, S. H. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986-3017.

6

Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553-3558.

7

Luo, W. Q.; Shi, H.; Schachtl, E.; Gutierrez, O. Y.; Lercher, J. A. Active sites on nickel-promoted transition-metal sulfides that catalyze hydrogenation of aromatic compounds. Angew. Chem. , Int. Ed. 2018, 57, 14555-14559.

8

Mahmood, N.; Zhang, C. Z.; Hou, Y. L. Nickel sulfide/nitrogen-doped graphene composites: Phase-controlled synthesis and high performance anode materials for lithium ion batteries. Small 2013, 9, 1321-1328.

9

Feng, L. L.; Li, G. D.; Liu, Y. P.; Wu, Y. Y.; Chen, H.; Wang, Y.; Zou, Y. C.; Wang, D. J.; Zou, X. X. Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 980-988.

10

Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519-527.

11

Xia, X. H.; Zhu, C. R.; Luo, J. S.; Zeng, Z. Y.; Guan, C.; Ng, C. F.; Zhang, H.; Fan, H. J. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small 2014, 10, 766-773.

12

Zhou, J. H.; Wang, L.; Yang, M. Y.; Wu, J. H.; Chen, F. J.; Huang, W. J.; Han, N.; Ye, H. L.; Zhao, F. P.; Li, Y. Y. et al. Hierarchical VS2 nanosheet assemblies: A universal host material for the reversible storage of alkali metal ions. Adv. Mater. 2017, 29, 1702061.

13

Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917-1933.

14

Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222-6227.

15

Chen, J. S.; Guan, C.; Gui, Y.; Blackwood, D. J. Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density. ACS Appl. Mater. Interfaces 2017, 9, 496-504.

16

Huang, K. J.; Zhang, J. Z.; Shi, G. W.; Liu, Y. M. Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material. Electrochim. Acta 2014, 132, 397-403.

17

Zhou, Y. L.; Yan, D.; Xu, H. Y.; Feng, J. K.; Jiang, X. L.; Yue, J.; Yang, J.; Qian, Y. T. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 2015, 12, 528-537.

18

Peng, S. J.; Li, L. L.; Tan, H. T.; Cai, R.; Shi, W. H.; Li, C. C.; Mhaisalkar, S. G.; Srinivasan, M.; Ramakrishna, S.; Yan, Q. Y. MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv. Funct. Mater. 2014, 24, 2155-2162.

19

Cheng, Z. G.; Wang, S. Z.; Si, D. J.; Geng, B. Y. Controlled synthesis of copper sulfide 3D nanoarchitectures through a facile hydrothermal route. J. Alloys Compd. 2010, 492, L44-L49.

20

Yu, X. Y.; Yu, L.; Shen, L. F.; Song, X. H.; Chen, H. Y.; Lou, X. W. General formation of MS (M = Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Adv. Funct. Mater. 2014, 24, 7440-7446.

21

Chen, T.; Zhang, Z. W.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Liu, J.; Jin, Z. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J. Am. Chem. Soc. 2017, 139, 12710-12715.

22

Li, D. J.; Maiti, U. N.; Lim, J.; Choi, D. S.; Lee, W. J.; Oh, Y.; Lee, G. Y.; Kim, S. O. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 2014, 14, 1228-1233.

23

Liao, L.; Zhu, J.; Bian, X. J.; Zhu, L. N.; Scanlon, M. D.; Girault, H. H.; Liu, B. H. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 2013, 23, 5326-5333.

24

Wang, Q. F.; Zou, R. Q.; Xia, W.; Ma, J.; Qiu, B.; Mahmood, A.; Zhao, R.; Yang, Y. Y. C.; Xia, D. G.; Xu, Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 2015, 11, 2511-2517.

25

Yonemoto, B. T.; Hutchings, G. S.; Jiao, F. A general synthetic approach for ordered mesoporous metal sulfides. J. Am. Chem. Soc. 2014, 136, 8895-8898.

26

Luc, W.; Jiao, F. Synthesis of nanoporous metals, oxides, carbides, and sulfides: Beyond nanocasting. Acc. Chem. Res. 2016, 49, 1351-1358.

27

Miao, R.; Dutta, B.; Sahoo, S.; He, J. K.; Zhong, W.; Cetegen, S. A.; Jiang, T.; Alpay, S. P.; Suib, S. L. Mesoporous iron sulfide for highly efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 13604-13607.

28

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963-969.

29

Shi, Y. F.; Wan, Y.; Liu, R. L.; Tu, B.; Zhao, D. Y. Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route. J. Am. Chem. Soc. 2007, 129, 9522-9531.

30

Chen, X. H.; Fan, R. Low-temperature hydrothermal synthesis of transition metal dichalcogenides. Chem. Mater. 2001, 13, 802-805.

31

Bao, S. J.; Li, C. M.; Guo, C. X.; Qiao, Y. Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. J. Power Sources 2008, 180, 676-681.

32

Dunne, P. W.; Starkey, C. L.; Gimeno-Fabra, M.; Lester, E. H. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials. Nanoscale 2014, 6, 2406-2418.

33

Lu, A. H.; Schüth, F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Adv. Mater. 2006, 18, 1793-1805.

34

Yang, H. F.; Zhao, D. Y. Synthesis of replica mesostructures by the nanocasting strategy. J. Mater. Chem. 2005, 15, 1217-1231.

35

Du, N.; Zhang, H.; Chen, J. E.; Sun, J. Y.; Chen, B. D.; Yang, D. R. Metal oxide and sulfide hollow spheres: Layer-by-layer synthesis and their application in lithium-ion battery. J. Phys. Chem. B 2008, 112, 14836-14842.

36

Luo, M.; Liu, Y.; Hu, J. C.; Li, J. L.; Liu, J.; Richards, R. M. General strategy for one-pot synthesis of metal sulfide hollow spheres with enhanced photocatalytic activity. Appl. Catal. B Environ. 2012, 125, 180-188.

37

Dolui, K.; Rungger, I.; Sanvito, S. Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys. Rev. B 2013, 87, 165402.

38

Kwok, K. M.; Ong, S. W. D.; Chen, L. W.; Zeng, H. C. Constrained growth of MoS2 nanosheets within a mesoporous silica shell and its effects on defect sites and catalyst stability for H2S decomposition. ACS Catal. 2018, 8, 714-724.

39

Bergwerff, J. A.; Jansen, M.; Leliveld, B. G.; Visser, T.; de Jong, K. P.; Weckhuysen, B. M. Influence of the preparation method on the hydrotreating activity of MoS2/Al2O3 extrudates: A Raman microspectroscopy study on the genesis of the active phase. J. Catal. 2006, 243, 292-302.

40

Lee, J. J.; Kim, H.; Moon, S. H. Preparation of highly loaded, dispersed MoS2/Al2O3 catalysts for the deep hydrodesulfurization of dibenzothiophenes. Appl. Catal. B Environ. 2003, 41, 171-180.

41

Youn, D. H.; Han, S.; Kim, J. Y.; Kim, J. Y.; Park, H.; Choi, S. H.; Lee, J. S. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support. ACS Nano 2014, 8, 5164-5173.

42

Lei, T. Y.; Chen, W.; Huang, J. W.; Yan, C. Y.; Sun, H. X.; Wang, C.; Zhang, W. L.; Li, Y. R.; Xiong, J. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1601843.

43

Wu, C.; Maier, J.; Yu, Y. Generalizable synthesis of metal-sulfides/carbon hybrids with multiscale, hierarchically ordered structures as advanced electrodes for lithium storage. Adv. Mater. 2016, 28, 174-180.

44

Han, C.; Li, Q.; Wang, D. W.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Cobalt sulfide nanowires core encapsulated by a N, S codoped graphitic carbon shell for efficient oxygen reduction reaction. Small 2018, 14, 1703642.

45

Xiong, Q. Z.; Wang, Y.; Liu, P. F.; Zheng, L. R.; Wang, G. Z.; Yang, H. G.; Wong, P. K.; Zhang, H. M.; Zhao, H. J. Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv. Mater. 2018, 30, 1801450.

46

Zhang, X. E.; Zhao, R. F.; Wu, Q. H.; Li, W. L.; Shen, C.; Ni, L. B.; Yan, H.; Diao, G. W.; Chen, M. Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance. ACS Nano 2017, 11, 8429-8436.

47

Ye, C.; Zhang, L.; Guo, C. X.; Li, D. D.; Vasileff, A.; Wang, H. H.; Qiao, S. Z. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1702524.

48

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.

49

Chen, B.; Meng, Y. H.; He, F.; Liu, E. Z.; Shi, C. S.; He, C. N.; Ma, L. Y.; Li, Q. Y.; Li, J. J.; Zhao, N. Q. Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries. Nano Energy 2017, 41, 154-163.

50

Wang, Y. M.; Wu, Z. Y.; Shi, L. Y.; Zhu, J. H. Rapid functionalization of mesoporous materials: Directly dispersing metal oxides into as-prepared SBA-15 occluded with template. Adv. Mater. 2005, 17, 323-327.

51

Wang, Y. M.; Wu, Z. Y.; Wang, H. J.; Zhu, J. H. Fabrication of metal oxides occluded in ordered mesoporous hosts via a solid-state grinding route: The influence of host-guest interactions. Adv. Funct. Mater. 2006, 16, 2374-2386.

52

Gao, X. M.; Chen, Z.; Yao, Y.; Zhou, M. Y.; Liu, Y.; Wang, J. X.; Wu, W. D.; Chen, X. D.; Wu, Z. X.; Zhao, D. Y. Direct heating amino acids with silica: A universal solvent-free assembly approach to highly nitrogen-doped mesoporous carbon materials. Adv. Funct. Mater. 2016, 26, 6649-6661.

53

Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem. , Int. Ed. 2010, 49, 4059-4062.

54

Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538-1544.

55

Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-552.

56

Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024-6036.

57

Yin, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965-7972.

58

Sui, C. X.; Chen, K.; Zhao, L. M.; Zhou, L.; Wang, Q. Q. MoS2-modified porous gas diffusion layer with air-solid-liquid interface for efficient electrocatalytic water splitting. Nanoscale 2018, 10, 15324-15331.

59

Guo, B. J.; Yu, K.; Li, H. L.; Song, H. L.; Zhang, Y. Y.; Lei, X.; Fu, H.; Tan, Y. H.; Zhu, Z. Q. Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 5517-5525.

60

Morales-Guio, C. G.; Hu, X. L. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 2014, 47, 2671-2681.

61

Ding, J. B.; Zhou, Y.; Li, Y. G.; Guo, S. J.; Huang, X. Q. MoS2 nanosheet assembling superstructure with a three-dimensional ion accessible site: A new class of bifunctional materials for batteries and electrocatalysis. Chem. Mater. 2016, 28, 2074-2080.

62

Zhang, L.; Liu, P. F.; Li, Y. H.; Wang, C. W.; Zu, M. Y.; Fu, H. Q.; Yang, X. H.; Yang, H. G. Accelerating neutral hydrogen evolution with tungsten modulated amorphous metal hydroxides. ACS Catal. 2018, 8, 5200-5205.

Nano Research
Pages 2250-2258
Cite this article:
Zhu J, Chen Z, Jia L, et al. Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications. Nano Research, 2019, 12(9): 2250-2258. https://doi.org/10.1007/s12274-019-2299-8
Topics:
Part of a topical collection:

829

Views

26

Crossref

N/A

Web of Science

26

Scopus

6

CSCD

Altmetrics

Received: 19 December 2018
Revised: 11 January 2019
Accepted: 13 January 2019
Published: 26 January 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return