Graphical Abstract

As a minimally invasive local cancer therapy, photothermal therapy (PTT) has aroused intensive interests in recent years. However, the therapeutic effect of PTT is still unsatisfying due to the production of heat shock proteins. Combination therapy has been regarded as a promising strategy to enhance therapeutic efficiency. In this study, a novel intelligent protoporphyrin (PpIX)-based polymer nanoplatform is developed for synergistic enhancement of cancer treatment through combined PTT and nitric oxide (NO) therapy. The core of the nanoparticle is composed of closely packed porphyrin-based NO donors and PpIX branches of the block copolymer. The prepared nanoparticles exhibit good photothermal conversion capability and high sensitivity to release NO under light illumination. And the produced high localized temperature and intracellular NO concentration could efficiently inhibit cancer cells both in vitro and in vivo. More important, this therapeutic nanoplatform can fundamentally eliminate the emergence of multidrug resistance and overcome the hypoxia microenvironment in tumors because of the absence of chemotherapeutic drugs and the oxygen-independent process, thus opening up new ideas for multifunctional therapeutic agent design for treatment of multidrug-resistant cancer.
Yan, J. J.; Zhang, X. D.; Liu, Y.; Ye, Y. Q.; Yu, J. C.; Chen, Q.; Wang, J. Q.; Zhang, Y. Q.; Hu, Q. Y.; Kang, Y. et al. Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Res. 2019, 12, 1313-1320.
Yang, C. Y.; Chen, Y. D.; Guo, W.; Gao, Y.; Song, C. Q.; Zhang, Q.; Zheng, N. N.; Han, X. J.; Guo, C. S. Bismuth ferrite-based nanoplatform design: An ablation mechanism study of solid tumor and NIR-triggered photothermal/photodynamic combination cancer therapy. Adv. Funct. Mater. 2018, 28, 1706827.
Wang, Y.; Wei, G. Q.; Zhang, X. B.; Xu, F. N.; Xiong, X.; Zhou, S. B. A step-by-step multiple stimuli-responsive nanoplatform for enhancing combined chemo-photodynamic therapy. Adv. Mater. 2017, 29, 1605357.
Zhao, N.; Wu, B. Y.; Hu, X. L.; Xing, D. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials 2017, 141, 40-49.
Han, K.; Zhu, J. Y.; Jia, H. Z.; Wang, S. B.; Li, S. Y.; Zhang, X. Z.; Han, H. Y. Mitochondria-targeted chimeric peptide for trinitarian overcoming of drug resistance. ACS Appl. Mater. Interfaces 2016, 8, 25060-25068.
Chen, H. B.; Gu, Z. J.; An, H. W.; Chen, C. Y.; Chen, J.; Cui, R.; Chen, S. Q.; Chen, W. H.; Chen, X. S.; Chen, X. Y. et al. Precise nanomedicine for intelligent therapy of cancer. Sci. China Chem. 2018, 61, 1503-1552.
Li, X. S.; Kwon, N.; Guo, T.; Liu, Z.; Yoon, J. Innovative strategies for hypoxic-tumor photodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 11522-11531.
Zhang, W. T.; Li, S. H.; Liu, X. N.; Yang, C. Y.; Hu, N.; Dou, L. N.; Zhao, B. X.; Zhang, Q. Y.; Suo, Y. R.; Wang, J. L. Oxygen-generating MnO2 nanodots-anchored versatile nanoplatform for combined chemo-photodynamic therapy in hypoxic cancer. Adv. Funct. Mater. 2018, 28, 1706375.
Li, X. S.; Yu, S.; Lee, D.; Kim, G.; Lee, B.; Cho, Y.; Zheng, B. Y.; Ke, M. R.; Huang, J. D.; Nam, K. T. et al. Facile supramolecular approach to nucleic-acid-driven activatable nanotheranostics that overcome drawbacks of photodynamic therapy. ACS Nano 2018, 12, 681-688.
Deng, K. R.; Li, C. X.; Huang, S. S.; Xing, B. G.; Jin, D. Y.; Zeng, Q. G.; Hou, Z. Y.; Lin, J. Recent progress in near infrared light triggered photodynamic therapy. Small 2017, 13, 1702299.
Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795-2838.
He, H.; Ji, S. S.; He, Y.; Zhu, A. J.; Zou, Y. L.; Deng, Y. B.; Ke, H. T.; Yang, H.; Zhao, Y. L.; Guo, Z. Q. et al. Photoconversion-tunable fluorophore vesicles for wavelength-dependent photoinduced cancer therapy. Adv. Mater. 2017, 29, 1606690.
Masuda, S.; Izpisua Belmonte, J. C. The microenvironment and resistance to personalized cancer therapy. Nat. Rev. Clin. Oncol. 2013, 10, 79.
Mo, R.; Gu, Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 2016, 19, 274-283.
Zhu, H. J.; Li, J. C.; Qi, X. Y.; Chen, P.; Pu, K. Y. Oxygenic hybrid semiconducting nanoparticles for enhanced photodynamic therapy. Nano Lett. 2018, 18, 586-594.
Chen, J.; Luo, H. L.; Liu, Y.; Zhang, W.; Li, H. X.; Luo, T.; Zhang, K.; Zhao, Y. X.; Liu, J. J. Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano 2017, 11, 12849-12862.
Chen, H. C.; Tian, J. W.; He, W. J.; Guo, Z. J. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 2015, 137, 1539-1547.
Cheng, Y. H.; Cheng, H.; Jiang, C. X.; Qiu, X. F.; Wang, K. K.; Huan, W.; Yuan, A. H.; Wu, J. H.; Hu, Y. Q. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 2015, 6, 8785.
Luo, Z. Y.; Zheng, M. B.; Zhao, P. F.; Chen, Z.; Siu, F. M.; Gong, P.; Gao, G. H.; Sheng, Z. H.; Zheng, C. F.; Ma, Y. F. et al. Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy. Sci. Rep. 2016, 6, 23393.
Li, R. Q.; Zhang, C.; Xie, B. R.; Yu, W. Y.; Qiu, W. X.; Cheng, H.; Zhang, X. Z. A two-photon excited O2-evolving nanocomposite for efficient photodynamic therapy against hypoxic tumor. Biomaterials 2019, 194, 84-93, DOI: 10.1016/j.biomaterials.2018.12.017.
Zhang, C.; Chen, W. H.; Liu, L. H.; Qiu, W. X.; Yu, W. Y.; Zhang, X. Z. An O2 self-supplementing and reactive-oxygen-species-circulating amplified nanoplatform via H2O/H2O2 splitting for tumor imaging and photodynamic therapy. Adv. Funct. Mater. 2017, 27, 1700626.
Wang, X. Q.; Peng, M. Y.; Li, C. X.; Zhang, Y.; Zhang, M. K.; Tang, Y.; Liu, M. D.; Xie, B. R.; Zhang, X. Z. Real-time imaging of free radicals for mitochondria-targeting hypoxic tumor therapy. Nano Lett. 2018, 18, 6804-6811.
Rong, Y.; Mack, P. Apoptosis induced by hyperthermia in dunn osteosarcoma cell line in vitro. Int. J. Hyperthermia 2000, 16, 19-27.
Xiao, Z. Y.; Xu, C. T.; Jiang, X. H.; Zhang, W. L.; Peng, Y. X.; Zou, R. J.; Huang, X. J.; Liu, Q.; Qin, Z. Y.; Hu, J. Q. Hydrophilic bismuth sulfur nanoflower superstructures with an improved photothermal efficiency for ablation of cancer cells. Nano Res. 2016, 9, 1934-1947.
Ye, S. Y.; Rao, J. M.; Qiu, S. H.; Zhao, J. L.; He, H.; Yan, Z. L.; Yang, T.; Deng, Y. B.; Ke, H. T.; Yang, H. et al. Rational design of conjugated photosensitizers with controllable photoconversion for dually cooperative phototherapy. Adv. Mater. 2018, 30, 1801216.
Chen, H. B.; Adam, A.; Cheng, Y. F.; Tang, S.; Hartung, J.; Bao, E. D. Localization and expression of heat shock protein 70 with rat myocardial cell damage induced by heat stress in vitro and in vivo. Mol. Med. Rep. 2015, 11, 2276-2284.
Wei, X.; Liu, L. Q.; Guo, X.; Wang, Y.; Zhao, J. Y.; Zhou, S. B. Light-activated ROS-responsive nanoplatform codelivering apatinib and doxorubicin for enhanced chemo-photodynamic therapy of multidrug-resistant tumors. ACS Appl. Mater. Interfaces 2018, 10, 17672-17684.
Wang, Y.; Wei, G. Q.; Zhang, X. B.; Huang, X. H.; Zhao, J. Y.; Guo, X.; Zhou, S. B. Multistage targeting strategy using magnetic composite nanoparticles for synergism of photothermal therapy and chemotherapy. Small 2018, 14, 1702994.
Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.
Tang, P.; Liu, Y. C.; Liu, Y. M.; Meng, H. R.; Liu, Z. Y.; Li, K.; Wu, D. C. Thermochromism-induced temperature self-regulation and alternating photothermal nanohelix clusters for synergistic tumor chemo/photothermal therapy. Biomaterials 2019, 188, 12-23.
Song, M. L.; Liu, N.; He, L.; Liu, G.; Ling, D. S.; Su, X. H.; Sun, X. L. Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy. Nano Res. 2018, 11, 2796-2808.
Wang, Y. Y.; Deng, Y. B.; Luo, H. H.; Zhu, A. J.; Ke, H. T.; Yang, H.; Chen, H. B. Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS Nano 2017, 11, 12134-12144.
Huo, D.; Liu, S.; Zhang, C.; He, J.; Zhou, Z. Y.; Zhang, H.; Hu, Y. Hypoxia-targeting, tumor microenvironment responsive nanocluster bomb for radical-enhanced radiotherapy. ACS Nano 2017, 11, 10159-10174.
Guo, Z.; Zhu, S.; Yong, Y.; Zhang, X.; Dong, X. H.; Du, J. F.; Xie, J. N.; Wang, Q.; Gu, Z. J.; Zhao, Y. L. Synthesis of BSA-coated BiOI@Bi2S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Adv. Mater. 2017, 29, 1704136.
Nam, J.; Son, S.; Ochyl, L. J.; Kuai, R.; Schwendeman, A.; Moon, J. J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018, 9, 1074.
Ng, C. W.; Li, J. C.; Pu, K. Y. Recent progresses in phototherapy-synergized cancer immunotherapy. Adv. Funct. Mater. 2018, 28, 1804688.
Pan, J. B.; Wang, Y. Q.; Zhang, C.; Wang, X. Y.; Wang, H. Y.; Wang, J. J.; Yuan, Y. Z.; Wang, X.; Zhang, X. J.; Yu, C. S. et al. Antigen-directed fabrication of a multifunctional nanovaccine with ultrahigh antigen loading efficiency for tumor photothermal-immunotherapy. Adv. Mater. 2018, 30, 1704408.
Ge, R.; Liu, C. W.; Zhang, X.; Wang, W. J.; Li, B. X.; Liu, J.; Liu, Y.; Sun, H. C.; Zhang, D. Q.; Hou, Y. C. et al. Photothermal-activatable Fe3O4 superparticle nanodrug carriers with PD-L1 immune checkpoint blockade for anti-metastatic cancer immunotherapy. ACS Appl. Mater. Interfaces 2018, 10, 20342-20355.
Ma, N.; Zhang, M. K.; Wang, X. S.; Zhang, L.; Feng, J.; Zhang, X. Z. NIR light-triggered degradable MoTe2 nanosheets for combined photothermal and chemotherapy of cancer. Adv. Funct. Mater. 2018, 28, 1801139.
Yang, J.; Zhai, S. D.; Qin, H.; Yan, H.; Xing, D.; Hu, X. L. NIR-controlled morphology transformation and pulsatile drug delivery based on multifunctional phototheranostic nanoparticles for photoacoustic imaging-guided photothermal-chemotherapy. Biomaterials 2018, 176, 1-12.
Zhang, Y. Y.; Yang, D.; Chen, H. Z.; Lim, W. Q.; Phua, F. S. Z.; An, G. H.; Yang, P. P.; Zhao, Y. L. Reduction-sensitive fluorescence enhanced polymeric prodrug nanoparticles for combinational photothermal-chemotherapy. Biomaterials 2018, 163, 14-24.
Wang, D. D.; Dong, H. F.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W. B.; Wang, C. T.; Zhang, X. J. Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 2018, 12, 5241-5252, DOI: 10.1021/acsnano.7b08355.
Kim, J.; Yung, B. C.; Kim, W. J.; Chen, X. Y. Combination of nitric oxide and drug delivery systems: Tools for overcoming drug resistance in chemotherapy. J. Control. Release 2017, 263, 223-230.
Fan, W. P.; Yung, B. C.; Chen, X. Y. Stimuli-responsive no release for on-demand gas-sensitized synergistic cancer therapy. Angew. Chem., Int. Ed. 2018, 57, 8383-8394.
Hare, J. M.; Stamler, J. S. NO/redox disequilibrium in the failing heart and cardiovascular system. J. Clin. Invest. 2005, 115, 509-517.
Masterson, T. A.; Arora, H.; Kulandavelu, S.; Carroll, R. S.; Kaiser, U. B.; Gultekin, S. H.; Hare, J. M.; Ramasamy, R. S-nitrosoglutathione reductase (GSNOR) deficiency results in secondary hypogonadism. J. Sex. Med. 2018, 15, 654-661.
Garthwaite, J. Concepts of neural nitric oxide-mediated transmission. Eur. J. Neurosci. 2008, 27, 2783-2802.
Dulce, R. A.; Mayo, V.; Rangel, E. B.; Balkan, W.; Hare, J. M. Interaction between neuronal nitric oxide synthase signaling and temperature influences sarcoplasmic reticulum calcium leak: Role of nitroso-redox balance. Circ. Res. 2015, 116, 46-55.
Lundberg, J. O.; Gladwin, M. T.; Weitzberg, E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat. Rev. Drug Discov. 2015, 14, 623-641.
Deepagan, V. G.; Ko, H.; Kwon, S.; Rao, N. V.; Kim, S. K.; Um, W.; Lee, S.; Min, J.; Lee, J.; Choi, K. Y. et al. Intracellularly activatable nanovasodilators to enhance passive cancer targeting regime. Nano Lett 2018, 18, 2637-2644.
Wei, G. Q.; Wang, Y.; Huang, X. H.; Yang, G.; Zhao, J. Y.; Zhou, S. B. Enhancing the accumulation of polymer micelles by selectively dilating tumor blood vessels with no for highly effective cancer treatment. Adv. Healthc. Mater. 2018, 7, 1801094.
Yang, T.; Zelikin, A. N.; Chandrawati, R. Progress and promise of nitric oxide-releasing platforms. Adv. Sci. 2018, 5, 1701043.
Jin, Z. K.; Wen, Y. Y.; Hu, Y. X.; Chen, W. W.; Zheng, X. F.; Guo, W. S.; Wang, T. F.; Qian, Z. Y.; Su, B. L.; He, Q. J. MRI-guided and ultrasound-triggered release of NO by advanced nanomedicine. Nanoscale 2017, 9, 3637-3645.
Jia, X. B.; Zhang, Y. H.; Zou, Y.; Wang, Y.; Niu, D. C.; He, Q. J.; Huang, Z. J.; Zhu, W. H.; Tian, H.; Shi, J. L. et al. Dual intratumoral redox/enzyme-responsive NO-releasing nanomedicine for the specific, high-efficacy, and low-toxic cancer therapy. Adv. Mater. 2018, 30, 1704490.
Zhang, K.; Xu, H. X.; Jia, X. Q.; Chen, Y.; Ma, M.; Sun, L. P.; Chen, H. R. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS Nano 2016, 10, 10816-10828.
Guo, R. R.; Tian, Y.; Wang, Y. J.; Yang, W. L. Near-infrared laser-triggered nitric oxide nanogenerators for the reversal of multidrug resistance in cancer. Adv. Funct. Mater. 2017, 27, 1606398.
Chen, L. J.; He, Q. J.; Lei, M. Y.; Xiong, L. W.; Shi, K.; Tan, L. W.; Jin, Z. K.; Wang, T. F.; Qian, Z. Y. Facile coordination-precipitation route to insoluble metal Roussin's black salts for NIR-responsive release of NO for anti-metastasis. ACS Appl. Mater. Interfaces 2017, 9, 36473-36477.
Beckman, J. S.; Koppenol, W. H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am. J. Physiol. 1996, 271, C1424-C1437.
Thomas, D. D. Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 2015, 5, 225-233.
Bourassa, J. L.; Ford, P. C. Flash and continuous photolysis studies of Roussin's red salt dianion Fe2S2(NO)42- in solution. Coord. Chem. Rev. 2000, 200-202, 887-900.
Bourassa, J.; DeGraff, W.; Kudo, S.; Wink, D. A.; Mitchell, J. B.; Ford, P. C. Photochemistry of Roussin's red salt, Na2[Fe2S2(NO)4], and of Roussin's black salt, NH4[Fe4S3(NO)7], in situ nitric oxide generation to sensitize γ-radiation induced cell death. J. Am. Chem. Soc. 1997, 119, 2853-2860.
Janczyk, A.; Wolnicka-Glubisz, A.; Chmura, A.; Elas, M.; Matuszak, Z.; Stochel, G.; Urbanska, K. NO-dependent phototoxicity of Roussin's black salt against cancer cells. Nitric Oxide 2004, 10, 42-50.
Yan, L. S.; Amirshaghaghi, A.; Huang, D.; Miller, J.; Stein, J. M.; Busch, T. M.; Cheng, Z. L.; Tsourkas, A. Protoporphyrin IX (PpIX)-coated superparamagnetic iron oxide nanoparticle (SPION) nanoclusters for magnetic resonance imaging and photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1707030.
Jin, C. S.; Lovell, J. F.; Chen, J.; Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 2013, 7, 2541-2550.
Conrado, C. L.; Wecksler, S.; Egler, C.; Magde, D.; Ford, P. C. Synthesis and photochemical properties of a novel iron-sulfur-nitrosyl cluster derivatized with the pendant chromophore protoporphyrin IX. Inorg. Chem. 2004, 43, 5543-5549.
Fuhrhop, J. H.; Demoulin, C.; Boettcher, C.; Koening, J.; Siggel, U. Chiral micellar porphyrin fibers with 2-aminoglycosamide head groups. J. Am. Chem. Soc. 1992, 114, 4159-4165.
Seo, J.; Jang, J.; Warnke, S.; Gewinner, S.; Schöllkopf, W.; von Helden, G. Stacking geometries of early protoporphyrin IX aggregates revealed by gas-phase infrared spectroscopy. J. Am. Chem. Soc. 2016, 138, 16315-16321.
Wecksler, S.; Mikhailovsky, A.; Ford, P. C. Photochemical production of nitric oxide via two-photon excitation with NIR light. J. Am. Chem. Soc. 2004, 126, 13566-13567.
Qu, Q. Q.; Wang, Y.; Zhang, L.; Zhang, X. B.; Zhou, S. B. A nanoplatform with precise control over release of cargo for enhanced cancer therapy. Small 2016, 12, 1378-1390.
Mallory, M.; Gogineni, E.; Jones, G. C.; Greer, L.; Simone Ⅱ, C. B. Therapeutic hyperthermia: The old, the new, and the upcoming. Crit. Rev. Oncol. Hematol. 2016, 97, 56-64.
Shah, B. P.; Pasquale, N.; De, G. J.; Tan, T.; Ma, J. J.; Lee, K. B. Core-shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis. ACS Nano 2014, 8, 9379-9387.
Cooper, C. E.; Giulivi, C. Nitric oxide regulation of mitochondrial oxygen consumption Ⅱ: Molecular mechanism and tissue physiology. Am. J. Physiol. Cell Physiol. 2007, 292, C1993-C2003.
Elfering, S. L.; Sarkela, T. M.; Giulivi, C. Biochemistry of mitochondrial nitric-oxide synthase. J. Biol. Chem. 2002, 277, 38079-38086.