AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fabrication of bilayer Pd-Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction

Yihe WangLei ZhangCongling HuShengnan YuPiaoping YangDongfang ChengZhi-Jian ZhaoJinlong Gong( )
Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University; Collaborative Innovation Center of Chemical Science and EngineeringTianjin300072China
Show Author Information

Graphical Abstract

Abstract

The hydrogen evolution reaction (HER), which generates molecular hydrogen through the electrochemical reduction of water, is an important clean-energy technology. Platinum (Pt) is an ideal material for HER electrocatalysts in terms of low overpotential and fast kinetics. An effective method to improve the atom utilization efficiency of Pt is to fabricate Pt-based core-shell or nanocage structures with ultra-thin walls. This paper describes the construction of bilayer palladium (Pd)-Pt alloy nanocages catalyst with enhanced HER catalytic activity. The nanocages were fabricated by etching away the Pd templates of multishelled nanocubes composed of alternate shells of Pd and Pt with well-defined (100) facets. The bilayer Pd-Pt nanocages with sub-nanometer shells have a high dispersion of the active atoms on the outside and inside surfaces of outer layer and inner layer, respectively. Moreover, the Pd-Pt alloy lowers the overpotential for HER and speeds up the reaction rate of HER due to the synergies between Pd and Pt. The rational design of bilayer nanocages provided a novel route for boosting the atom utilization efficiency of Pt catalysts.

Electronic Supplementary Material

Download File(s)
12274_2019_2312_MOESM1_ESM.pdf (2.6 MB)

References

1

Litster, S.; McLean, G. PEM fuel cell electrodes. J. Power Sources 2004, 130, 61-76.

2

Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345-352.

3

Zhu, H.; Luo, M. C.; Zhang, S.; Wei, L. L.; Wang, F. H.; Wang, Z. M.; Wei, Y. S.; Han, K. F. Combined method to prepare core-shell structured catalyst for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2013, 38, 3323-3329.

4

Marković, N. M.; Grgur, B. N.; Ross, P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 1997, 101, 5405-5413.

5

Markovića, N. M.; Sarraf, S. T.; Gasteiger, H. A.; Ross, P. N., Jr. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J. Chem. Soc., Faraday Trans. 1996, 92, 3719-3725.

6

Zhang, H.; Jin, M. S.; Xia, Y. N. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 2012, 41, 8035-8049.

7

Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143-164.

8

Guo, S. J.; Wang, E. K. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today 2011, 6, 240-264.

9

Wang, X.; Figueroa-Cosme, L.; Yang, X.; Luo, M.; Liu, J. Y.; Xie, Z. X.; Xia, Y. N. Pt-based icosahedral nanocages: Using a combination of {111} facets, twin defects, and ultrathin walls to greatly enhance their activity toward oxygen reduction. Nano Lett. 2016, 16, 1467-1471.

10

Yu, S. N.; Zhang, L.; Dong, H.; Gong, J. L. Facile synthesis of Pd@Pt octahedra supported on carbon for electrocatalytic applications. AIChE J. 2017, 63, 2528-2534.

11

Yu, S. N.; Zhang, L.; Zhao, Z. J.; Gong, J. L. Structural evolution of concave trimetallic nanocubes with tunable ultra-thin shells for oxygen reduction reaction. Nanoscale 2016, 8, 16640-16649.

12

Fan, H.; Yang, L. J.; Wang, Y.; Zhang, X. L.; Wu, Q. S.; Che, R. C.; Liu, M.; Wu, Q.; Wang, X. Z.; Hu, Z. Boosting oxygen reduction activity of spinel CoFe2O4 by strong interaction with hierarchical nitrogen-doped carbon nanocages. Sci. Bull. 2017, 62, 1365-1372.

13

Hu, C. L.; Zhang, L.; Zhao, Z. J.; Li, A.; Chang, X. X.; Gong, J. L. Synergism of geometric construction and electronic regulation: 3D Se-(NiCo)Sx/(OH)x nanosheets for highly efficient overall water splitting. Adv. Mater. 2018, 30, 1705538.

14

Zhu, W. J.; Zhang, L.; Yang, P. P.; Chang, X. X.; Dong, H.; Li, A.; Hu, C. L.; Huang, Z. Q.; Zhao, Z. J.; Gong, J. L. Morphological and compositional design of Pd-Cu bimetallic nanocatalysts with controllable product selectivity toward CO2 electroreduction. Small 2018, 14, 1703314.

15

Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. Platinum monolayer electrocatalysts for O2 reduction:  Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 2004, 108, 10955-10964.

16

Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. , Int. Ed. 2005, 44, 2132-2135.

17

Sasaki, K.; Naohara, H.; Choi, Y.; Cai, Y.; Chen, W. F.; Liu, P.; Adzic, R. R. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 2012, 3, 1115.

18

Xie, S. F.; Choi, S. I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J. G.; Kim, M. J.; Xie, Z. X.; Mavrikakis, M.; Xia, Y. N. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570-3576.

19

Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412-416.

20

Zhang, J. J.; Zhang, P.; Wang, T.; Gong, J. L. Monoclinic WO3 nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting. Nano Energy 2015, 11, 189-195.

21

Dang, K.; Chang, X. X.; Wang, T.; Gong, J. L. Enhancement of photoelectrochemical oxidation by an amorphous nickel boride catalyst on porous BiVO4. Nanoscale 2017, 9, 16133-16137.

22

Dang, K.; Wang, T.; Li, C. C.; Zhang, J. J.; Liu, S. S.; Gong, J. L. Improved oxygen evolution kinetics and surface states passivation of Ni-Bi co-catalyst for a hematite photoanode. Engineering 2017, 3, 285-289.

23

Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd−Pt bimetallic nanocrystals with a concave structure through a bromide-Induced Galvanic Replacement Reaction. J. Am. Chem. Soc. 2011, 133, 6078-6089.

24

Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177-2196.

25

Zhang, P.; Wang, T.; Gong, J. L. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 2015, 27, 5328-5342.

26

Yu, L.; Hu, H.; Wu, H. B.; Lou, X. W. Complex hollow nanostructures: Synthesis and energy-related applications. Adv. Mater. 2017, 29, 1604563.

27

Li, A.; Zhang, P.; Chang, X. X.; Cai, W. T.; Wang, T.; Gong, J. L. Gold nanorod@TiO2 yolk-shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small 2015, 11, 1892-1899.

28

Li, C. C.; Wang, T.; Luo, Z. B.; Liu, S. S.; Gong, J. L. Enhanced charge separation through ALD-modified Fe2O3/Fe2TiO5 nanorod heterojunction for photoelectrochemical water oxidation. Small 2016, 12, 3415-3422.

29

Zhang, P.; Wang, T.; Zhang, J. J.; Chang, X. X.; Gong, J. L. Bridging the transport pathway of charge carriers in a Ta3N5 nanotube array photoanode for solar water splitting. Nanoscale 2015, 7, 13153-13158.

30

Xu, S. H.; Li, Z. S.; Lei, F. L.; Wang, Y. L.; Xie, Y. X.; Lin, S. Facile synthesis of hydrangea-like core-shell Pd@Pt/graphene composite as an efficient electrocatalyst for methanol oxidation. Appl. Surf. Sci. 2017, 426, 351-359.

31

Teran, F. E.; Santos, D. M.; Ribeiro, J.; Kokoh, K. B. Activity of PtSnRh/C nanoparticles for the electrooxidation of C1 and C2 alcohols. Thin Solid Films 2012, 520, 5846-5850.

Nano Research
Pages 2268-2274
Cite this article:
Wang Y, Zhang L, Hu C, et al. Fabrication of bilayer Pd-Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction. Nano Research, 2019, 12(9): 2268-2274. https://doi.org/10.1007/s12274-019-2312-y
Topics:
Part of a topical collection:

928

Views

49

Crossref

N/A

Web of Science

49

Scopus

5

CSCD

Altmetrics

Received: 17 December 2018
Revised: 24 January 2019
Accepted: 25 January 2019
Published: 07 March 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return