AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO

Zheng Zhang1,2Chao Ma3Yunchuan Tu1,2Rui Si4Jie Wei1Shuhong Zhang1Zhen Wang5Jian-Feng Li1Ye Wang1Dehui Deng1,2( )
State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
State Key Laboratory of CatalysisiChEMDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
College of Materials Science and EngineeringHunan UniversityChangsha410082China
Shanghai Synchrotron Radiation FacilityShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201204China
Materials and Structural Analysis DivisionThermo Fisher ScientificInternational BioislandGuangzhou510320China
Show Author Information

Graphical Abstract

Abstract

Electrocatalytic CO2 reduction to CO is a sustainable process for energy conversion. However, this process is still hindered by the diffusion-limited mass transfer, low electrical conductivity and catalytic activity. Therefore, new strategies for catalyst design should be adopted to solve these problems and improve the electrocatalytic performance for CO production. Herein, we report a multiscale carbon foam confining single iron atoms prepared with the assistant of SiO2 template. The pore-enriched environment at the macro-scale facilitates the diffusion of reactants and products. The graphene nanosheets at the nano-scale promote the charge transfer during the reaction. The single iron atoms confined in carbon matrix at the atomic-scale provide the active sites for electrocatalytic CO2 reduction to CO. The optimized catalyst achieves a CO Faradaic efficiency of 94.9% at a moderate potential of?0.5 V vs. RHE. Furthermore, the performance can be maintained over 60 hours due to the stable single iron atoms coordinated with four nitrogen atoms in the carbon matrix. This work provides a promising strategy to improve both the activity and stability of single atom catalysts for electrocatalytic CO2 reduction to CO.

Electronic Supplementary Material

Download File(s)
12274_2019_2316_MOESM1_ESM.pdf (5.4 MB)

References

1

Bi, W. T.; Wu, C. Z.; Xie, Y. Atomically thin two-dimensional solids: An emerging platform for CO2 electroreduction. ACS Energy Lett. 2018, 3, 624-633.

2

Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

3

Zhang, B. H.; Zhang, J. T. Rational design of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide. J. Energy Chem. 2017, 26, 1050-1066.

4

Weng, Z.; Zhang, X.; Wu, Y. S.; Huo, S. J.; Jiang, J. B.; Liu, W.; He, G. J.; Liang, Y. Y.; Wang, H. L. Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew. Chem., Int. Ed. 2017, 56, 13135-13139.

5

Genovese, C.; Ampelli, C.; Perathoner, S.; Centi, G. Electrocatalytic conversion of CO2 to liquid fuels using nanocarbon-based electrodes. J. Energy Chem. 2013, 22, 202-213.

6

Nielsen, D. U.; Hu, X. M.; Daasbjerg, K.; Skrydstrup, T. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 2018, 1, 244-254.

7

Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288-4291.

8

Zhang, B.; Zhao, T. J.; Feng, W. J.; Liu, Y. X.; Wang, H. H.; Su, H.; Lv, L. B.; Li, X. H.; Chen, J. S. Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2. Nano Res. 2018, 11, 2450-2459.

9

Wu, Y. S.; Jiang, J. B.; Weng, Z.; Wang, M. Y.; Broere, D. L. J.; Zhong, Y. R.; Brudvig, G. W.; Feng, Z. X.; Wang, H. L. Electroreduction of CO2 catalyzed by a heterogenized Zn-porphyrin complex with a redox-Innocent metal center. ACS Cent. Sci. 2017, 3, 847-852.

10

Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R. et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065-1068.

11

Cheng, K.; Gu, B.; Liu, X. L.; Kang, J. C.; Zhang, Q. H.; Wang, Y. Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angew. Chem., Int. Ed. 2016, 55, 4725-4728.

12

Deng, D. H.; Chen, X. Q.; Yu, L.; Wu, X.; Liu, Q. F.; Liu, Y.; Yang, H. X.; Tian, H. F.; Hu, Y. F.; Du, P. P. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462.

13

Cui, X. J.; Li, H. B.; Wang, Y.; Hu, Y. L.; Hua, L.; Li, H. Y.; Han, X. W.; Liu, Q. F.; Yang, F.; He, L. M. et al. Room-temperature methane conversion by graphene-confined single iron atoms. Chem 2018, 4, 1902-1910.

14

Qiao, B. T.; Liang, J. X.; Wang, A. Q.; Xu, C. Q.; Li, J.; Zhang, T.; Liu, J. Y. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913-2924.

15

Chen, X. Q.; Yu, L.; Wang, S. H.; Deng, D. H.; Bao, X. H. Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy 2017, 32, 353-358.

16

Cui, X. J.; Xiao, J. P.; Wu, Y. H.; Du, P. P.; Si, R.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Zhang, W. H.; Deng, D. H. et al. A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2016, 55, 6708-6712.

17

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242-1264.

18

Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427-2431.

19

Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292-6297.

20

Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 3, 1806-1854.

21

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944-13960.

22

Wang, Y.; Zhang, W. H.; Deng, D. H.; Bao, X. H. Two-dimensional materials confining single atoms for catalysis. Chin. J. Catal. 2017, 38, 1443-1453.

23

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63-72.

24

Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889-14892.

25

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944-1948.

26

Deng, J.; Li, H. B.; Wang, S. H.; Ding, D.; Chen, M. S.; Liu, C.; Tian, Z. Q.; Novoselov, K. S.; Ma, C.; Deng, D. H. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430.

27

Zhang, Z.; Xiao, J. P.; Chen, X. J.; Yu, S.; Yu, L.; Si, R.; Wang, Y.; Wang, S. H.; Meng, X. G.; Wang, Y. et al. Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 16339-16342.

28

Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 2680-2721.

29

Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823-4892.

30

Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188-1193.

31

Ren, H.; Wang, Y.; Yang, Y.; Tang, X.; Peng, Y. Q.; Peng, H. Q.; Xiao, L.; Lu, J. T.; Abruña, H. D.; Zhuang, L. Fe/N/C nanotubes with atomic Fe sites: A highly active cathode catalyst for alkaline polymer electrolyte fuel cells. ACS Catal. 2017, 7, 6485-6492.

32

Xiao, M. L.; Zhu, J. B.; Ma, L.; Jin, Z.; Ge, J. J.; Deng, X.; Hou, Y.; He, Q. G.; Li, J. K.; Jia, Q. Y. et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 2018, 8, 2824-2832.

33

Cook, P. L.; Liu, X. S.; Yang, W. L.; Himpsel, F. J. X-ray absorption spectroscopy of biomimetic dye molecules for solar cells. J. Chem. Phys. 2009, 131, 194701.

34

Huan, T. N.; Ranjbar, N.; Rousse, G.; Sougrati, M.; Zitolo, A.; Mougel, V.; Jaouen, F.; Fontecave, M. Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: A structure-selectivity study. ACS Catal. 2017, 7, 1520-1525.

35

Pan, F. P.; Zhang, H. G.; Liu, K. X.; Cullen, D.; More, K.; Wang, M. Y.; Feng, Z. X.; Wang, G. F.; Wu, G.; Li, Y. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 2018, 8, 3116-3122.

36

Zhu, Y. P.; Chen, G.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv. Sci. 2018, 5, 1700603.

37

Zheng, W. J.; Zhang, Y.; Niu, K. Y.; Liu, T.; Bustillo, K.; Ercius, P.; Nordlund, D.; Wu, J. Q.; Zheng, H. M.; Du, X. W. Selective nitrogen doping of graphene oxide by laser irradiation for enhanced hydrogen evolution activity. Chem. Commun. 2018, 54, 13726-13729.

38

Fan, X. J.; Peng, Z. W.; Ye, R. Q.; Zhou, H. Q.; Guo, X. M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 2015, 9, 7407-7418.

Nano Research
Pages 2313-2317
Cite this article:
Zhang Z, Ma C, Tu Y, et al. Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Research, 2019, 12(9): 2313-2317. https://doi.org/10.1007/s12274-019-2316-9
Topics:
Part of a topical collection:

760

Views

87

Crossref

N/A

Web of Science

91

Scopus

1

CSCD

Altmetrics

Received: 31 December 2018
Revised: 27 January 2019
Accepted: 27 January 2019
Published: 12 March 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return