AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polygonal multi-polymorphed Li4Ti5O12@rutile TiO2 as anodes in lithium-ion batteries

Chang Hyun Hwang1,§Hee-eun Kim1,§Inho Nam2( )Jin Ho Bang1,3( )
Department of Bionano Technology, Hanyang University,55 Hanyangdaehak-ro, Sangnok-gu, Ansan,Gyeonggi-do,15588,Republic of Korea;
School of Chemical Engineering & Materials Science,Chung-Ang University, 84 Heukseok-ro, Dongjak-gu,Seoul,06974,Republic of Korea;
Department of Chemical and Molecular Engineering,Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan,Gyeonggi-do,15588,Republic of Korea;

§ Chang Hyun Hwang and Hee-eun Kim contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Li4Ti5O12 (LTO) has attracted considerable attention in lithium-ion battery (LIB) applications because of its favorable characteristics as an anode material. Despite its promise, the widespread use of LTO is still limited primarily due to its intrinsically poor electric and ionic conductivities and high surface reactivity. To address these issues, we designed polygonal nanoarchitectures composed of various Li–Ti oxide crystal polymorphs by a facile synthesis route. Depending on the pH condition, this synthesis approach yields multi-polymorphed Li–Ti oxides where the interior is dominantly composed of a Li-rich phase and the exterior is a Li-deficient (or Li-free) phase. As one of these variations, a polygonal LTO-rutile TiO2 structure is formed. The rutile TiO2 on the surface of this LTO composite significantly improves the kinetics of Li+ insertion/extraction because the channel along the c-axis in TiO2 provides a Li+ highway due to the significantly low energy barrier for Li+ diffusion. Moreover, the presence of rutile TiO2, which is less reactive with a carbonate-based electrolyte, ensures long-term stability by suppressing the undesirable interfacial reaction on LTO.

Electronic Supplementary Material

Download File(s)
12274_2019_2320_MOESM1_ESM.pdf (2.9 MB)

References

1

Sorrell, S. Reducing energy demand: A review of issues, challenges and approaches. Renew. Sustain. Energy Rev. 2015, 47, 74-82.

2

Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017, 3, 1063-1069.

3

Lee, L.; Kang, B.; Han, S.; Kim, H. E.; Lee, M. D.; Bang, J. H. A generalizable top-down nanostructuring method of bulk oxides: Sequential oxygen-nitrogen exchange reaction. Small 2018, 14, 1801124.

4

Li, Z. H.; Feng, X. M.; Mi, L. W.; Zheng, J. Y.; Chen, X. Y.; Chen, W. H. Hierarchical porous onion-shaped LiMn2O4 as ultrahigh-rate cathode material for lithium ion batteries. Nano Res. 2018, 11, 4038-4048.

5

Zhao, L. F.; Tang, T.; Chen, W. H.; Feng, X. M.; Mi, L. W. Carbon coated ultrasmall anatase TiO2 nanocrystal anchored on N, S-RGO as high-performance anode for sodium ion batteries. Green Energy Environ. 2018, 3, 277-285.

6

Yuan, T.; Tan, Z. P.; Ma, C. R.; Yang, J. H.; Ma, Z. F.; Zheng, S. Y. Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv. Energy Mater. 2017, 7, 1601625.

7

Ariyoshi, K.; Yamato, R.; Ohzuku, T. Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion (shuttlecock) batteries. Electrochim. Acta 2005, 51, 1125-1129.

8

Ohzuku, T.; Ueda, A.; Yamamoto, N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 1995, 142, 1431-1435.

9

Lu, X.; Gu, L.; Hu, Y. S.; Chiu, H. C.; Li, H.; Demopoulos, G. P.; Chen, L. Q. New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12 anode. J. Am. Chem. Soc. 2015, 137, 1581-1586.

10

Yi, T. F.; Jiang, L. J.; Shu, J.; Yue, C. B.; Zhu, R. S.; Qiao, H. B. Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. J. Phys. Chem. Solids 2010, 71, 1236-1242.

11

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

12

Belharouak, I.; Sun, Y. K.; Lu, W.; Amine, K. On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system. J. Electrochem. Soc. 2007, 154, A1083-A1087.

13

Schmidt, W.; Bottke, P.; Sternad, M.; Gollob, P.; Hennige, V.; Wilkening, M. Small change-great effect: Steep increase of Li ion dynamics in Li4Ti5O12 at the early stages of chemical Li insertion. Chem. Mater. 2015, 27, 1740-1750.

14

Fell, C. R.; Sun, L. Y.; Hallac, P. B.; Metz, B.; Sisk, B. Investigation of the gas generation in lithium titanate anode based lithium ion batteries. J. Electrochem. Soc. 2015, 162, A1916-A1920.

15

He, Y. B.; Li, B. H.; Liu, M.; Zhang, C.; Lv, W.; Yang, C.; Li, J.; Du, H. D.; Zhang, B.; Yang, Q. H. et al. Gassing in Li4Ti5O12-based batteries and its remedy. Sci. Rep. 2012, 2, 913.

16

Han, C. P.; He, Y. B.; Liu, M.; Li, B. H.; Yang, Q. H.; Wong, C. P.; Kang, F. Y. A review of gassing behavior in Li4Ti5O12-based lithium ion batteries. J. Mater. Chem. A 2017, 5, 6368-6381.

17

Lv, W. Q.; Gu, J. M.; Niu, Y. H.; Wen, K. C.; He, W. D. Review-gassing mechanism and suppressing solutions in Li4Ti5O12-based lithium-ion batteries. J. Electrochem. Soc. 2017, 164, A2213-A2224.

18

Chiu, H. C.; Lu, X.; Zhou, J. G.; Gu, L.; Reid, J.; Gauvin, R.; Zaghib, K.; Demopoulos, G. P. Capacity fade mechanism of Li4Ti5O12 nanosheet anode. Adv. Energy Mater. 2017, 7, 1601825.

19

Wang, Y. Q.; Gu, L.; Guo, Y. G.; Li, H.; He, X. Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L. J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874-7879.

20

Jo, M. R.; Lee, G. H.; Kang, Y. M. Controlling solid-electrolyte-interphase layer by coating p-type semiconductor NiOx on Li4Ti5O12 for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 27934-27939.

21

Park, K. S.; Benayad, A.; Kang, D. J.; Doo, S. G. Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J. Am. Chem. Soc. 2008, 130, 14930-14931.

22

Fang, Z. K.; Zhu, Y. R.; Yi, T. F.; Xie, Y. Li4Ti5O12-LiAlO2 composite as high performance anode material for lithium-ion battery. ACS Sustainable Chem. Eng. 2016, 4, 1994-2003.

23

Lee, E. J.; Nam, I.; Yi, J.; Bang, J. H. Nanoporous hexagonal TiO2 superstructure as a multifunctional material for energy conversion and storage. J. Mater. Chem. A 2015, 3, 3500-3510.

24

Baek, J.; Park, S.; Song, C. K.; Kim, T. Y.; Nam, I.; Lee, J. M.; Han, J. W.; Yi, J. Radial alignment of c-channel nanorods in 3D porous TiO2 for eliciting enhanced Li storage performance. Chem. Commun. 2015, 51, 15019-15022.

25

Sushko, M. L.; Rosso, K. M.; Liu, J. Mechanism of Li+/electron conductivity in rutile and anatase TiO2 nanoparticles. J. Phys. Chem. C 2010, 114, 20277-20283.

26

Boudaren, C.; Bataille, T.; Auffrédic, J. P.; Louër, D. Synthesis, structure determination from powder diffraction data and thermal behaviour of titanium(Ⅳ) oxalate[Ti2O3(H2O)2](C2O4)·H2O. Solid State Sci. 2003, 5, 175-182.

27

Wang, X. D.; Ouyang, J.; Su, J.; Zhou, W. A phase-field model for simulating various spherulite morphologies of semi-crystalline polymers. Chin. Phys. B 2013, 22, 106103.

28

Xu, H. J.; Matkar, R.; Kyu, T. Phase-field modeling on morphological landscape of isotactic polystyrene single crystals. Phys. Rev. E 2005, 72, 011804.

29

Gottstein, G.; Rollett, A. D.; Shvindlerman, L. S. On the validity of the von Neumann-Mullins relation. Scr. Mater. 2004, 51, 611-616.

30

Gottstein, G.; Shvindlerman, L. S. Triple junction drag and grain growth in 2D polycrystals. Acta Mater. 2002, 50, 703-713.

31

Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Gozzo, F.; Garcia-Hernandez, M.; Garcia, M. A.; Cingolani, R.; Cozzoli, P. D. Architectural control of seeded-grown magnetic-semicondutor iron oxide-TiO2 nanorod heterostructures: The role of seeds in topology selection. J. Am. Chem. Soc. 2010, 132, 2437-2464.

32

Lee, C. H.; Li, P. pH-induced formation of various hierarchical structures from amphiphilic core-shell nanotubes. RSC Adv. 2012, 2, 1303-1306.

33

Pileni, M. P. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 2001, 105, 3358-3371.

34

Han, J. P.; Zhang, B.; Wang, L. Y.; Qi, Y. X.; Zhu, H. L.; Lu, G. X.; Yin, L. W.; Li, H.; Lun, N.; Bai, Y. J. Combined modification of dual-phase Li4Ti5O12-TiO2 by lithium zirconates to optimize rate capabilities and cyclability. ACS Appl. Mater. Interfaces 2018, 10, 24910-24919.

35

Huang, C.; Zhao, S. X.; Peng, H.; Lin, Y. H.; Nan, C. W.; Cao, G. Z. Hierarchical porous Li4Ti5O12-TiO2 composite anode materials with pseudocapacitive effect for high-rate and low-temperature applications. J. Mater. Chem. A 2018, 6, 14339-14351.

36

Yi, T. F.; Fang, Z. K.; Xie, Y.; Zhu, Y. R.; Yang, S. Y. Rapid charge-discharge property of Li4Ti5O12-TiO2 nanosheet and nanotube composites as anode material for power lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 20205-20213.

37

Zhang, W.; Liu, Z. Y.; Xiao, X. C.; Liu, D. W. Synthesis of nanoporous Li4Ti5O12-TiO2 composites for high-performance lithium-ion-battery anodes. ChemElectroChem 2016, 3, 1951-1959.

38

Jiang, Y. M.; Wang, K. X.; Zhang, H. J.; Wang, J. F.; Chen, J. S. Hierarchical Li4Ti5O12/TiO2 composite tubes with regular structural imperfection for lithium ion storage. Sci. Rep. 2013, 3, 3490.

39

Wu, F. X.; Li, X. H.; Wang, Z. X.; Guo, H. J. Petal-like Li4Ti5O12-TiO2 nanosheets as high-performance anode materials for Li-ion batteries. Nanoscale 2013, 5, 6936-6943.

40

Wang, P.; Zhang, G.; Cheng, J.; You, Y.; Li, Y. K.; Ding, C.; Gu, J. J.; Zheng, X. S.; Zhang, C. F.; Cao, F. F. Facile synthesis of carbon-coated spinel Li4Ti5O12/rutile-TiO2 composites as an improved anode material in full lithium-ion batteries with LiFePO4@n-doped carbon cathode. ACS Appl. Mater. Interfaces 2017, 9, 6138-6143.

41

Wang, F.; Luo, L. C.; Du, J.; Guo, L. G.; Li, B. H.; Ding, Y. Nitrogen-doped carbon decorated Li4Ti5O12 composites as anode materials for high performance lithium-ion batteries. RSC Adv. 2015, 5, 46359-46365.

42

Lin, C. F.; Fan, X. Y.; Xin, Y. L.; Cheng, F. Q.; Lai, M. O.; Zhou, H. H.; Lu, L. Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: Morphology and electrochemical performances. Nanoscale 2014, 6, 6651-6660.

43

Zhu, Z. Q.; Cheng, F. Y.; Chen, J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J. Mater. Chem. A 2013, 1, 9484-9490.

44

Ri, S. G.; Zhan, L.; Wang, Y.; Zhou, L. H.; Hu, J.; Liu, H. L. Li4Ti5O12/graphene nanostructure for lithium storage with high-rate performance. Electrochim. Acta 2013, 109, 389-394.

45

Bae, S.; Nam, I.; Park, S.; Yoo, Y. G.; Yu, S.; Lee, J. M.; Han, J. W.; Yi, J. Interfacial adsorption and redox coupling of Li4Ti5O12 with nanographene for high-rate lithium storage. ACS Appl. Mater. Interfaces 2015, 7, 16565-16572.

46

Yan, B.; Li, M. S.; Li, X. F.; Bai, Z. M.; Yang, J. W.; Xiong, D. B.; Li, D. J. Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li4Ti5O12 anode. J. Mater. Chem. A 2015, 3, 11773-11781.

47

Zou, H. L.; Liang, X.; Feng, X. Y.; Xiang, H. F. Chromium-modified Li4Ti5O12 with a synergistic effect of bulk doping, surface coating, and size reducing. ACS Appl. Mater. Interfaces 2016, 8, 21407-21416.

48

Bhatti, H. S.; Anjum, D. H.; Ullah, S.; Ahmed, B.; Habib, A.; Karim, A.; Hasanain, S. K. Electrochemical characteristics and Li+ ion intercalation kinetics of dual-phase Li4Ti5O12/Li2TiO3 composite in the voltage range 0-3 V. J. Phys. Chem. C 2016, 120, 9553-9561.

49

Sundaramurthy, J.; Aravindan, V.; Kumar, P. S.; Madhavi, S.; Ramakrishna, S. Electrospun TiO2 nanofibers as insertion anode for Li-ion battery applications. J. Phys. Chem. C 2014, 118, 16776-16781.

50

Bi, Z. H.; Paranthaman, M. P.; Menchhofer, P. A.; Dehoff, R. R.; Bridges, C. A.; Chi, M. F.; Guo, B. K.; Sun, X. G.; Dai, S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J. Power Sources 2013, 222, 461-466.

51

Leng, M.; Chen, Y.; Xue, J. M. Synthesis of TiO2 nanosheets via an exfoliation route assisted by a surfactant. Nanoscale 2014, 6, 8531-8534.

52

van der Ven, A.; Bhattacharya, J.; Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 2013, 46, 1216-1225.

53

Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210-1211.

54

Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527-1535.

55

Zhu, Y. Q.; Cao, C. B.; Zhang, J. T.; Xu, X. Y. Two-dimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A 2015, 3, 9556-9564.

56

Wang, L.; Nie, Z. Y.; Cao, C. B.; Zhu, Y. Q.; Khalid, S. Chrysanthemum-like TiO2 nanostructures with exceptional reversible capacity and high Coulombic efficiency for lithium storage. J. Mater. Chem. A 2015, 3, 6402-6407.

57

Kim, H.; Kim, S. W.; Park, Y. U.; Gwon, H.; Seo, D. H.; Kim, Y.; Kang, K. SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813-821.

58

Han, B.; Lee, E. J.; Choi, W. H.; Yoo, W. C.; Bang, J. H. Three-dimensionally ordered mesoporous carbons activated by hot ammonia treatment as high-performance anode materials in lithium-ion batteries. New J. Chem. 2015, 39, 6178-6185.

59

Zhang, Y. Q.; Du, F.; Yan, X.; Jin, Y. M.; Zhu, K.; Wang, X.; Li, H. M.; Chen, G.; Wang, C. Z.; Wei, Y. J. Improvements in the electrochemical kinetic properties and rate capability of anatase titanium dioxide nanoparticles by nitrogen doping. ACS Appl. Mater. Interfaces 2014, 6, 4458-4465.

60

Tang, Y. X.; Zhang, Y. Y.; Rui, X. H.; Qi, D. P.; Luo, Y. F.; Leow, W. R.; Chen, S.; Guo, J.; Wei, J. Q.; Li, W. L. et al. Conductive inks based on a lithium titanate nanotube gel for high-rate lithium-ion batteries with customized configuration. Adv. Mater. 2016, 28, 1567-1576.

Nano Research
Pages 897-904
Cite this article:
Hwang CH, Kim H-e, Nam I, et al. Polygonal multi-polymorphed Li4Ti5O12@rutile TiO2 as anodes in lithium-ion batteries. Nano Research, 2019, 12(4): 897-904. https://doi.org/10.1007/s12274-019-2320-0
Topics:

912

Views

28

Crossref

N/A

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 21 August 2018
Revised: 20 January 2019
Accepted: 29 January 2019
Published: 06 March 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return