AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection

Meng Xu1Guopeng Tu1Muwei Ji2,3Xiaodong Wan1Jiajia Liu1Jia Liu1Hongpan Rong1Yanlian Yang4Chen Wang4Jiatao Zhang1( )
Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications,Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology,Beijing,100081,China;
Institute of Low-dimensional Materials Genome Initiative,College of chemistry and environmental engineering, Shenzhen University, Guangdong,Shenzhen,518060,China;
Graduate School at Shenzhen,Tsinghua University,Shenzhen,518055,China;
National Center for Nanoscience and Technology (NCNST),Chinese Academy of Sciences,Beijing,100190,China;
Show Author Information

Graphical Abstract

Abstract

Utilizing vacuum-tuned-atmosphere induced dip coating method, we achieve the cross-dimensional macroscopic diverse self-assemblies by using one building block with one chemical functionality. Coordinated modulating the vacuum degree, colloid concentration and evaporation atmosphere, Au@Ag core/shell nanocubes (NCs) can controllably assemble into diverse multi-dimensional superstructures. Under 0.08 MPa, we obtained the two-dimensional (2D) stepped superstructures with continuously tunable step width. In addition, we generated a series of tailorable nanoscale-roughened 2D Au@Ag NCs superstructures at 0.04 MPa, which exhibited the label-free ultrasensitive SERS detection for the different mutants of IAPP8-37 proteins. Under 0.01 MPa, we obtained the cross-dimensional tailorable Au@Ag NCs assemblies from random to macroscale 2D and three-dimensional (3D) densest superstructures by adjusting the capping ligand-environmental molecule interactions. This is a flexible method to generate as-prepared Au@Ag core/shell NCs into well-defined macroscopic diverse superstructures and to promote the exploitation into biological applications.

Electronic Supplementary Material

Download File(s)
12274_2019_2325_MOESM1_ESM.pdf (1.9 MB)

References

1

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389-458.

2

Ross, M. B.; Ku, J. C.; Vaccarezza, V. M.; Schatz, G. C.; Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat. Nanotechnol. 2015, 10, 453-458.

3

Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. D. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 2012, 11, 131-137.

4

Zhu, Z. N.; Meng, H. F.; Liu, W. J.; Liu, X. F.; Gong, J. X.; Qiu, X. H.; Jiang, L.; Wang, D.; Tang, Z. Y. Superstructures and SERS properties of gold nanocrystals with different shapes. Angew. Chem., Int. Ed. 2011, 50, 1593-1596.

5

Nagaoka, Y.; Tan, R.; Li, R. P.; Zhu, H.; Eggert, D.; Wu, Y. A.; Liu, Y. Z.; Wang, Z. W.; Chen, O. Superstructures generated from truncated tetrahedral quantum dots. Nature 2018, 561, 378-382.

6

Hu, S.; Liu, H. L.; Wang, P. P.; Wang, W. Inorganic nanostructures with sizes down to 1 nm: A macromolecule analogue. J. Am. Chem. Soc. 2013, 135, 11115-11124.

7

Dong, A. G.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010, 466, 474-477.

8

Bodnarchuk, M. I.; Kovalenko, M. V.; Heiss, W.; Talapin, D. V. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: Temperature as the structure-directing factor. J. Am. Chem. Soc. 2010, 132, 11967-11977.

9

Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H. L.; Cheah, K. W.; Chen, J. Y.; Wang, J. F. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem., Int. Ed. 2008, 47, 9685-9690.

10

Chiu, C. Y.; Chen, C. K.; Chang, C. W.; Jeng, U. S.; Tan, C. S.; Yang, C. W.; Chen, L. J.; Yen, T. J.; Huang, M. H. Surfactant-directed fabrication of supercrystals from the assembly of polyhedral Au-Pd core-shell nanocrystals and their electrical and optical properties. J. Am. Chem. Soc. 2015, 137, 2265-2275.

11

Huang, L.; Zheng, J. J.; Huang, L. L.; Liu, J.; Ji, M. W.; Yao, Y.; Xu, M.; Liu, J. J.; Zhang, J. T.; Li, Y. D. Controlled synthesis and flexible self-assembly of monodisperse Au@semiconductor core/shell hetero-nanocrystals into diverse superstructures. Chem. Mater. 2017, 29, 2355-2363.

12

Zheng, J. J.; Dai, B. S.; Liu, J.; Liu, J. L.; Ji, M. W.; Liu, J. J.; Zhou, Y. M.; Xu, M.; Zhang, J. T. Hierarchical self-assembly of Cu7Te5 nanorods into superstructures with enhanced SERS performance. ACS Appl. Mater. Interfaces 2016, 8, 35426-35434.

13

Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Ag, Ag2S, and Ag2Se nanocrystals:  Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016-4022.

14

Li, W. J.; Zhong, X. H. Capping ligand-induced self-assembly for quantum dot sensitized solar cells. J. Phys. Chem. Lett. 2015, 6, 796-806.

15

Pinchetti, V.; Di, Q. M.; Lorenzon, M.; Camellini, A.; Fasoli, M.; Zavelani-Rossi, M.; Meinardi, F.; Zhang, J. T.; Crooker, S. A.; Brovelli, S. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants. Nat. Nanotechnol. 2018, 13, 145-151.

16

Zhao, Q.; Zhang, J. T.; Zhu, H. S. A facile strategy to prepare monodisperse nanocrystals with initiative assembly into superlattice. Prog Nat Sci-Mater. 2013, 23, 588-592.

17

Zhang, Y.; Wang, M. S.; Zhu, E. B.; Zheng, Y. B.; Huang, Y.; Huang X. Q. Seedless growth of palladium nanocrystals with tunable structures: From tetrahedra to nanosheets. Nano Lett. 2015, 15, 7519-7525.

18

Bu, L. Z.; Feng, Y. G.; Yao, J. L.; Guo, S. J.; Guo, J.; Huang, X. Q. Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts. Nano Res. 2016, 9, 2811-2821.

19

Qian, H. M.; Zhao, Q.; Dai, B. S.; Guo, L. J.; Zhang, J. X.; Liu, J. J.; Zhang, J. T.; Zhu, H. S. Oriented attachment of nanoparticles to form micrometer-sized nanosheets/nanobelts by topotactic reaction on rigid/flexible substrates with improved electronic properties. NPG Asia Mater. 2015, 7, e152.

20

Yang, Y. J.; Lee, Y. H.; Phang, I. Y.; Jiang, R. B.; Sim, H. Y. F.; Wang, J. F.; Ling, X. Y. A chemical approach to break the planar configuration of Ag nanocubes into tunable two-dimensional metasurfaces. Nano Lett. 2016, 16, 3872-3878.

21

Yang, Y. J.; Lee, Y. H.; Lay, C. L.; Ling, X. Y. Tuning molecular-level polymer conformations enables dynamic control over both the interfacial behaviors of Ag nanocubes and their assembled metacrystals. Chem. Mater. 2017, 29, 6137-6144.

22

Lewandowski, W.; Fruhnert, M.; Mieczkowski, J.; Rockstuhl, C.; Górecka, E. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat. Commun. 2015, 6, 6590.

23

Wei, J. J.; Schaeffer, N.; Pileni, M. P. Solvent-mediated crystallization of nanocrystal 3D assemblies of silver nanocrystals: Unexpected superlattice ripening. Chem. Mater. 2016, 28, 293-302.

24

Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220-11289.

25

Alvarez-Puebla, R. A.; Agarwal, A.; Manna, P.; Khanal, B. P.; Aldeanueva-Potel, P.; Carbó-Argibay, E.; Pazos-Pérez, N.; Vigderman, L.; Zubarev, E. R.; Kotov, N. A. et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. USA 2011, 108, 8157-8161.

26

Lane, L. A.; Qian, X. M.; Nie, S. M. SERS nanoparticles in medicine: From label-free detection to spectroscopic tagging. Chem. Rev. 2015, 115, 10489-10529.

27

Kleinman, S. L.; Sharma, B.; Blaber, M. G.; Henry, A. I.; Valley, N.; Freeman, R. G.; Natan, M. J.; Schatz, G. C.; Van Duyne, R. P. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J. Am. Chem. Soc. 2013, 135, 301-308.

28

Li, J. F.; Anema, J. R.; Wandlowskic, T.; Tian, Z. Q. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev. 2015, 44, 8399-8409.

29

Niu, W. X.; Chua, Y. A. A.; Zhang, W. Q.; Huang, H. J.; Lu, X. M. Highly symmetric gold nanostars: Crystallographic control and surface-enhanced Raman scattering property. J. Am. Chem. Soc. 2015, 137, 10460-10463.

30

Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176-2179.

31

Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 2010, 132, 268-274.

32

Ling, X. Y.; Yan, R. X.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. D. Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132-143.

33

Li, C. Y.; Fan, F. R.; Yin, B. S.; Chen, L.; Ganguly, T.; Tian, Z. Q. Au+-cetyltrimethylammonium bromide solution: A novel precursor for seed-mediated growth of gold nanoparticles in aqueous solution. Nano Res. 2013, 6, 29-37.

34

Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y. F.; Bao, F.; Sun, B. Q.; Zhang, X. H.; Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201-7206.

35

Tu, G. P.; Deogratias, N.; Xu, M.; Li, X. W.; Liu, J. J.; Jiang, L.; Yang, Y. L.; Zhang, J. T. Sharp-featured Au@Ag core/shell nanocuboid synthesis and the label-free ultrasensitive SERS detection of protein single-point mutations. Mater. Chem. Front. 2018, 2, 1720-1724.

36

Gaulding, E. A.; Diroll, B. T.; Goodwin, E. D.; Vrtis, Z. J.; Kagan, C. R.; Murray, C. B. Deposition of wafer-scale single-component and binary nanocrystal superlattice thin films via dip-coating. Adv. Mater. 2015, 27, 2846-2851.

37

Boniello, G.; Blanc, C.; Fedorenko, D.; Medfai, M.; Mbarek, N. B.; In, M.; Gross, M.; Stocco, A.; Nobili, M. Brownian diffusion of a partially wetted colloid. Nat. Mater. 2015, 14, 908-911.

38

Yang, Y. L.; Wang, C. Hierarchical construction of self-assembled low-dimensional molecular architectures observed by using scanning tunneling microscopy. Chem. Soc. Rev. 2009, 38, 2576-2589.

39

Bao, W.; Melli, M.; Caselli, N.; Riboli, F.; Wiersma, D. S.; Staffaroni, M.; Choo, H.; Ogletree, D. F.; Aloni, S.; Bokor, J. et al. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 2012, 338, 1317-1321.

40

Pavan Kumar, G. V.; Ashok Reddy, B. A.; Arif, M.; Kundu, T. K.; Narayana, C. Surface-enhanced Raman scattering studies of human transcriptional coactivator p300. J. Phys. Chem. B 2006, 110, 16787-16792.

41

Podstawka-Proniewicz, E.; Piergies, N.; Skołuba, D.; Kafarski, P.; Kim, Y.; Proniewicz, L. M. Vibrational characterization of L-leucine phosphonate analogues: FT-IR, FT-Raman, and SERS spectroscopy studies and DFT calculations. J. Phys. Chem. A 2011, 115, 11067-11078.

42

Brulé, T.; Yockell-Lelièvre, H.; Bouhélier, A.; Margueritat, J.; Markey, L.; Leray, A.; Dereux, A.; Finot, E. Sorting of enhanced reference Raman spectra of a single amino acid molecule. J. Phys. Chem. C 2014, 118, 17975-17982.

43

Choi, I.; Huh, Y. S.; Erickson, D. Ultra-sensitive, label-free probing of the conformational characteristics of amyloid beta aggregates with a SERS active nanofluidic device. Microfluid. Nanofluid. 2012, 12, 663-669.

Nano Research
Pages 1375-1379
Cite this article:
Xu M, Tu G, Ji M, et al. Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection. Nano Research, 2019, 12(6): 1375-1379. https://doi.org/10.1007/s12274-019-2325-8
Topics:
Part of a topical collection:

778

Views

19

Crossref

N/A

Web of Science

20

Scopus

5

CSCD

Altmetrics

Received: 30 November 2018
Revised: 17 January 2019
Accepted: 29 January 2019
Published: 29 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return