AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe

Judun Zheng1,2Yunxia Wu1,2Da Xing1,2( )Tao Zhang1,2( )
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science,South China Normal University,Guangzhou,510631,China;
College of Biophotonics,South China Normal University,Guangzhou,510631,China;
Show Author Information

Graphical Abstract

Abstract

Cellular redox status presents broad implications with diverse physiological and pathological processes. Simultaneous detection of both the oxidative and reductive species of redox couples, especially the most representative pair glutathione/hydrogen peroxide (GSH/H2O2), is crucial to accurately map the cellular redox status. However, it still remains challenging to synchronously detect GSH/H2O2 in vivo due to lack of a reliable measuring tool. Herein, a ratiometric nanoprobe (UCNP-TB) possessing simultaneous delectability of GSH/H2O2 is established based on a multi-spectral upconverting nanophosphor (UCNP-OA) as the luminescence resonance energy transfer (LRET) donor and two dye molecules as the acceptors, including a GSH-sensitive dye (TCG) and a H2O2-sensitive dye (BCH). With the as-prepared UCNP-TB, real-time and synchronous monitoring the variation of GSH and H2O2 in vitro and in living mice can be achieved using the ratio of the upconversion luminescence (UCL) at 540 and 650 nm to that at 800 nm as the detection signal, respectively, providing highly inherent reliability of the sensing results by self-calibration. Moreover, the nanoprobe is capable of mapping the redox status within the drug-resistant tumor and the drug-induced hepatotoxic liver via ratiometric UCL imaging. Thus, this nanoprobe would provide a reliable tool to elucidate the redox state in vivo.

Electronic Supplementary Material

Download File(s)
12274_2019_2327_MOESM1_ESM.pdf (5 MB)

References

1

Balaban, R. S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell 2005, 120, 483-495.

2

Wang, K.; Zhang, T.; Dong, Q.; Nice, E. C.; Huang, C. H.; Wei, Y. Q. Redox homeostasis: The linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 2013, 4, e537.

3

Tsang, C. K.; Chen, M.; Cheng, X.; Qi, Y. M.; Chen, Y.; Das, I.; Li, X. X.; Vallat, B.; Fu, L. W.; Qian, C. N. et al. SOD1 phosphorylation by mTORC1 couples nutrient sensing and redox regulation. Mol. Cell 2018, 70, 502-515. e8.

4

Fruehauf, J. P.; Meyskens, F. L., Jr. Reactive oxygen species: A breath of life or death? Clin. Cancer Res. 2007, 13, 789-794.

5

Breckwoldt, M. O.; Pfister, F. M. J.; Bradley, P. M.; Marinkovic, P.; Williams, P. R.; Brill, M. S.; Plomer, B.; Schmalz, A.; St Clair, D. K.; Naumann, R. et al. Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat. Med. 2014, 20, 555-560.

6

Sun, Q. A.; Kirnarsky, L.; Sherman, S.; Gladyshev, V. N. Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc. Natl. Acad. Sci. USA 2001, 98, 3673-3678.

7

Gutscher, M.; Pauleau, A. L.; Marty, L.; Brach, T.; Wabnitz, G. H.; Samstag, Y.; Meyer, A. J.; Dick, T. P. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 2008, 5, 553-559.

8

Vaughn, A. E.; Deshmukh, M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat. Cell. Biol. 2008, 10, 1477-1483.

9

Acharya, A.; Das, I.; Chandhok, D.; Saha, T. Redox regulation in cancer: A double-edged sword with therapeutic potential. Oxid. Med. Cell. Longev. 2010, 3, 23-34.

10

Ishimoto, T.; Nagano, O.; Yae, T.; Tamada, M.; Motohara, T.; Oshima, H.; Oshima, M.; Ikeda, T.; Asaba, R.; Yagi, H. et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc- and thereby promotes tumor growth. Cancer Cell 2011, 19, 387-400.

11

Shuhendler, A. J.; Pu, K. Y.; Cui, L. N.; Uetrecht, J. P.; Rao, J. H. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol. 2014, 32, 373-380.

12

Hassan, Z. K.; Elobeid, M. A.; Virk, P.; Omer, S. A.; ElAmin, M.; Daghestani, M. H.; AlOlayan, E. M. Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxid. Med. Cell. Longev. 2012, 2012, 194829.

13

Barnham, K. J.; Masters, C. L.; Bush, A. I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3, 205-214.

14

Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione "AND" H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849-857.

15

Lou, Z. R.; Li, P.; Han, K. L. Redox-responsive fluorescent probes with different design strategies. Acc. Chem. Res. 2015, 48, 1358-1368.

16

Yuan, L.; Lin, W. Y.; Xie, Y. N.; Chen, B.; Zhu, S. S. Single fluorescent probe responds to H2O2, NO, and H2O2/NO with three different sets of fluorescence signals. J. Am. Chem. Soc. 2012, 134, 1305-1315.

17

Yu, F. B.; Li, P.; Song, P.; Wang, B. S.; Zhao, J. Z.; Han, K. L. Facilitative functionalization of cyanine dye by an on-off-on fluorescent switch for imaging of H2O2 oxidative stress and thiols reducing repair in cells and tissues. Chem. Commun. 2012, 48, 4980-4982.

18

Guo, Z. Q.; Park, S.; Yoon, J. Y.; Shin, I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev. 2014, 43, 16-29.

19

Koide, Y.; Kawaguchi, M.; Urano, Y.; Hanaoka, K.; Komatsu, T.; Abo, M.; Terai, T.; Nagano, T. A reversible near-infrared fluorescence probe for reactive oxygen species based on Te-rhodamine. Chem. Commun. 2012, 48, 3091-3093.

20

Yu, F. B.; Li, P.; Li, G. Y.; Zhao, G. J.; Chu, T. S.; Han, K. L. A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. J. Am. Chem. Soc. 2011, 133, 11030-11033.

21

Yu, F. B.; Li, P.; Wang, B. S.; Han, K. L. Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo. J. Am. Chem. Soc. 2013, 135, 7674-7680.

22

Li, N.; Than, A.; Sun, C. C.; Tian, J. Q.; Chen, J.; Pu, K. Y.; Dong, X. C.; Chen, P. Monitoring dynamic cellular redox homeostasis using fluorescence-switchable graphene quantum dots. ACS Nano 2016, 10, 11475-11482.

23

Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869-10939.

24

Zhang, Y. L.; Shao, X. M.; Wang, Y.; Pan, F. C.; Kang, R. X.; Peng, F. F.; Huang, Z. T.; Zhang, W. J.; Zhao, W. L. Dual emission channels for sensitive discrimination of Cys/Hcy and GSH in plasma and cells. Chem. Commun. 2015, 51, 4245-4248.

25

Lim, S. Y.; Hong, K. H.; Kim, D. I.; Kwon, H.; Kim, H. J. Tunable heptamethine-azo dye conjugate as an NIR fluorescent probe for the selective detection of mitochondrial glutathione over cysteine and homocysteine. J. Am. Chem. Soc. 2014, 136, 7018-7025.

26

Yin, J.; Kwon, Y.; Kim, D.; Lee, D.; Kim, G.; Hu, Y.; Ryu, J. H.; Yoon, J. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J. Am. Chem. Soc. 2014, 136, 5351-5358.

27

Xu, K. H.; Qiang, M. M.; Gao, W.; Su, R. X.; Li, N.; Gao, Y.; Xie, Y. X.; Kong, F. P.; Tang, B. A near-infrared reversible fluorescent probe for real-time imaging of redox status changes in vivo. Chem. Sci. 2013, 4, 1079-1086.

28

McMahon, B. K.; Gunnlaugsson, T. Selective detection of the reduced form of glutathione (GSH) over the oxidized (GSSG) form using a combination of glutathione reductase and a Tb(Ⅲ)-cyclen maleimide based lanthanide luminescent "switch on" assay. J. Am. Chem. Soc. 2012, 134, 10725-10728.

29

Lou, Z. R.; Li, P.; Sun, X. F.; Yang, S. Q.; Wang, B. S.; Han, K. L. A fluorescent probe for rapid detection of thiols and imaging of thiols reducing repair and H2O2 oxidative stress cycles in living cells. Chem. Commun. 2013, 49, 391-393.

30

Huang, X. L.; Song, J. B.; Yung, B. C.; Huang, X. H.; Xiong, Y. H.; Chen, X. Y. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873-2920.

31

Chu, B. B.; Song, B.; Ji, X. Y.; Su, Y. Y.; Wang, H. Y.; He, Y. Fluorescent silicon nanorods-based ratiometric sensors for long-term and real-time measurements of intracellular pH in live cells. Anal. Chem. 2017, 89, 12152-12159.

32

Chu, B. B.; Wang, H. Y.; Song, B.; Peng, F.; Su, Y. Y.; He, Y. Fluorescent and photostable silicon nanoparticles sensors for real-time and long-term intracellular pH measurement in live cells. Anal. Chem. 2016, 88, 9235-9242.

33

Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161-5214.

34

Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 2015, 115, 10530-10574.

35

Liu, Y.; Chen, M.; Cao, T. Y.; Sun, Y.; Li, C. Y.; Liu, Q.; Yang, T. S.; Yao, L. M.; Feng, W.; Li, F. Y. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J. Am. Chem. Soc. 2013, 135, 9869-9876.

36

Li, Z. H.; Yuan, H.; Yuan, W.; Su, Q. Q.; Li, F. Y. Upconversion nanoprobes for biodetections. Coordin. Chem. Rev. 2018, 354, 155-168.

37

Wang, M.; Mi, C. C.; Wang, W. X.; Liu, C. H.; Wu, Y. F.; Xu, Z. R.; Mao, C. B.; Xu, S. K. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles. ACS Nano 2009, 3, 1580-1586.

38

Vetrone, F.; Naccache, R.; Zamarrón, A.; de la Fuente, A. J.; Sanz-Rodríguez, F.; Maestro, L. M.; Rodriguez, E. M.; Jaque, D.; Solé, J. G.; Capobianco, J. A. Temperature sensing using fluorescent nanothermometers. ACS Nano 2010, 4, 3254-3258.

39

Wang, N. N.; Yu, X. Y.; Zhang, K.; Mirkin, C. A.; Li, J. S. Upconversion nanoprobes for the ratiometric luminescent sensing of nitric oxide. J. Am. Chem. Soc. 2017, 139, 12354-12357.

40

Zhou, Y.; Pei, W. B.; Wang, C. Y.; Zhu, J. X.; Wu, J. S.; Yan, Q. Y.; Huang, L.; Huang, W.; Yao, C.; Loo, J. S. C. et al. Rhodamine-modified upconversion nanophosphors for ratiometric detection of hypochlorous acid in aqueous solution and living cells. Small 2014, 10, 3560-3567.

41

Park, Y. I.; Lee, K. T.; Suh, Y. D.; Hyeon, T. Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem. Soc. Rev. 2015, 44, 1302-1317.

42

Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416-1448.

43

Yang, Y. M.; Shao, Q.; Deng, R. R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. G. et al. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 3125-3129.

44

Ding, Q. W.; Zhan, Q. Q.; Zhou, X. M.; Zhang, T.; Xing, D. Theranostic upconversion nanobeacons for tumor mRNA ratiometric fluorescence detection and imaging-monitored drug delivery. Small 2016, 12, 5944-5953.

45

Li, Z.; Lv, S. W.; Wang, Y. L.; Chen, S. Y.; Liu, Z. H. Construction of LRET-based nanoprobe using upconversion nanoparticles with confined emitters and bared surface as luminophore. J. Am. Chem. Soc. 2015, 137, 3421-3427.

46

Yao, L. M.; Zhou, J.; Liu, J. L.; Feng, W.; Li, F. Y. Iridium-complex-modified upconversion nanophosphors for effective LRET detection of cyanide anions in pure water. Adv. Funct. Mater. 2012, 22, 2667-2672.

47

Liu, Q.; Peng, J. J.; Sun, L. N.; Li, F. Y. High-efficiency upconversion luminescent sensing and bioimaging of Hg(Ⅱ) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano 2011, 5, 8040-8048.

48

Zhou, L.; Wang, R.; Yao, C.; Li, X. M.; Wang, C. L.; Zhang, X. Y.; Xu, C. J.; Zeng, A. J.; Zhao, D. Y.; Zhang, F. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat. Commun. 2015, 6, 6938.

49

Yuan, Q.; Wu, Y.; Wang, J.; Lu, D. Q.; Zhao, Z. L.; Liu, T.; Zhang, X. B.; Tan, W. H. Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided G-quadruplex DNA carrier and near-infrared light. Angew. Chem., Int. Ed. 2013, 52, 13965-13969.

50

Xiao, Q. F.; Zheng, X. P.; Bu, W. B.; Ge, W. Q.; Zhang, S. J.; Chen, F.; Xing, H. Y.; Ren, Q. G.; Fan, W. P.; Zhao, K. L. et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 2013, 135, 13041-13048.

51

Uhm, H.; Kang, W.; Ha, K. S.; Kang, C.; Hohng, S. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch. Proc. Natl. Acad. Sci. USA 2018, 115, 331-336.

52

Liu, J.; Liu, Y.; Bu, W. B.; Bu, J. W.; Sun, Y.; Du, J. L.; Shi, J. L. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J. Am. Chem. Soc. 2014, 136, 9701-9709.

53

Deng, R. R.; Xie, X. J.; Vendrell, M.; Chang, Y. T.; Liu, X. G. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc. 2011, 133, 20168-20171.

54

Ni, J. K.; Shan, C. X.; Li, B.; Zhang, L. M.; Ma, H. P.; Luo, Y. S.; Song, H. Assembling of a functional cyclodextrin-decorated upconversion luminescence nanoplatform for cysteine-sensing. Chem. Commun. 2015, 51, 14054-14056.

55

Li, Z.; Liang, T.; Lv, S. W.; Zhuang, Q. G.; Liu, Z. H. A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical. J. Am. Chem. Soc. 2015, 137, 11179-11185.

56

Liu, Y. X.; Jia, Q.; Guo, Q. W.; Jiang, A. Q.; Zhou, J. In vivo oxidative stress monitoring through intracellular hydroxyl radicals detection by recyclable upconversion nanoprobes. Anal. Chem. 2017, 89, 12299-12305.

57

Peng, J. J.; Samanta, A.; Zeng, X.; Han, S. Y.; Wang, L.; Su, D. D.; Loong, D. T. B.; Kang, N. Y.; Park, S. J.; All, A. H. et al. Real-time in vivo hepatotoxicity monitoring through chromophore-conjugated photon-upconverting nanoprobes. Angew. Chem., Int. Ed. 2017, 56, 4165-4169.

58

Yuan, J.; Cen, Y.; Kong, X. J.; Wu, S.; Liu, C. L.; Yu, R. Q.; Chu, X. MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl. Mater. Interfaces 2015, 7, 10548-10555.

59

Guo, Q. W.; Liu, Y. X.; Jia, Q.; Zhang, G.; Fan, H. M.; Liu, L. D.; Zhou, J. Ultrahigh sensitivity multifunctional nanoprobe for the detection of hydroxyl radical and evaluation of heavy metal induced oxidative stress in live hepatocyte. Anal. Chem. 2017, 89, 4986-4993.

60

Harris, I. S.; Treloar, A. E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K. C.; Yung, K. Y.; Brenner, D.; Knobbe-Thomsen, C. B.; Cox, M. A. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 2015, 27, 211-222.

61

Rahman, I.; MacNee, W. Regulation of redox glutathione levels and gene transcription in lung inflammation: Therapeutic approaches. Free Radic. Biol. Med. 2000, 28, 1405-1420.

62

Szatrowski, T. P.; Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991, 51, 794-798.

63

Zhang, W. J.; Liu, T.; Huo, F. J.; Ning, P.; Meng, X. M.; Yin, C. X. Reversible ratiometric fluorescent probe for sensing bisulfate/H2O2 and its application in zebrafish. Anal. Chem. 2017, 89, 8079-8083.

64

Jiang, X. Q.; Yu, Y.; Chen, J. W.; Zhao, M. K.; Chen, H.; Song, X. Z.; Matzuk, A. J.; Carroll, S. L.; Tan, X.; Sizovs, A. et al. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe. ACS Chem. Biol. 2015, 10, 864-874.

65

Dong, B. L.; Song, X. Z.; Kong, X. Q.; Wang, C.; Tang, Y. H.; Liu, Y.; Lin, W. Y. Simultaneous near-infrared and two-photon in vivo imaging of H2O2 using a ratiometric fluorescent probe based on the unique oxidative rearrangement of oxonium. Adv. Mater. 2016, 28, 8755-8759.

66

Godwin, A. K.; Meister, A.; O'Dwyer, P. J.; Huang, C. S.; Hamilton, T. C.; Anderson, M. E. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc. Natl. Acad. Sci. USA 1992, 89, 3070-3074.

67

Kaplowitz, N. Idiosyncratic drug hepatotoxicity. Nat. Rev. Drug Discov. 2005, 4, 489-499.

Nano Research
Pages 931-938
Cite this article:
Zheng J, Wu Y, Xing D, et al. Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe. Nano Research, 2019, 12(4): 931-938. https://doi.org/10.1007/s12274-019-2327-6
Topics:

868

Views

59

Crossref

N/A

Web of Science

57

Scopus

2

CSCD

Altmetrics

Received: 18 December 2018
Revised: 29 January 2019
Accepted: 30 January 2019
Published: 23 February 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return