AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications

Xiaoqiang Xiang1,2Hang Lin1( )Renfu Li1Yao Cheng1Qingming Huang3Ju Xu1Congyong Wang1Xueyuan Chen1Yuansheng Wang1( )
CAS Key Laboratory of Design and Assembly of Functional Nanostructures,and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences,Fuzhou,350002,China;
College of Chemistry and Materials Science,Fujian Normal University,Fuzhou,350007,China;
Instrumentation Analysis and Research Center,Fuzhou University,Fuzhou,350002,China;
Show Author Information

Graphical Abstract

Abstract

In this work, we discovered an unexpected mechanoluminescence (ML) phenomena occurring when transforming amorphous into crystalline, due to the stress-induced precipitation of CsPbBr3 perovskite nanocrystals on glass surface. It is revealed that, unlike the conventional thermal-induced phase transformation mechanism, the breakage of bonding of glass network provides the energy for nucleation and growth, and the shear stress avoids the long-range migration of structural units for crystallization. Such unique ML phenomenon enables the visualization of dynamical force that is inaccessible by common strategy, and so, opens up some novel applications, such as the pressure-sensitive "glassy pencil" to learn people's writing habits, and the Pb2+-detection with good sensitivity and selectivity. These findings not only demonstrate an effective route for the preparation of perovskite materials in a green, time-saving, low cost, and scalable way, enrich the knowledge of glass crystallization mechanism, but also exploit a useful avenue to quantitatively visualize the dynamical force.

Electronic Supplementary Material

Video
12274_2019_2338_MOESM2_ESM.avi
12274_2019_2338_MOESM3_ESM.avi
Download File(s)
12274_2019_2338_MOESM5_ESM.pdf (3.4 MB)

References

1

Karpukhina, N.; Hill, R. G.; Law, R. V. Crystallisation in oxide glasses-a tutorial review. Chem. Soc. Rev. 2014, 43, 2174-2186.

2

Komatsu, T. Design and control of crystallization in oxide glasses. J. Non-Cryst. Solids 2015, 428, 156-175.

3

Fedorov, P. P.; Luginina, A. A.; Popov, A. I. Transparent oxyfluoride glass ceramics. J. Fluorine Chem. 2015, 172, 22-50.

4

Fokin, V. M.; Zanotto, E. D.; Yuritsyn, N. S.; Schmelzer, J. W. P. Homogeneous crystal nucleation in silicate glasses: A 40 years perspective. J. Non-Cryst. Solids 2006, 352, 2681-2714.

5

Liu, X. F.; Zhou, J. J.; Zhou, S. F.; Yue, Y. Z.; Qiu, J. R. Transparent glass-ceramics functionalized by dispersed crystals. Prog. Mater. Sci. 2018, 97, 38-96.

6

Zhang, R.; Lin, H.; Yu, Y. L.; Chen, D. Q.; Xu, J.; Wang, Y. S. A new-generation color converter for high-power white LED: Transparent Ce3+: YAG phosphor-in-glass. Laser Photonics Rev. 2014, 8, 158-164.

7

Llordés, A.; Garcia, G.; Gazquez, J.; Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 2013, 500, 323-326.

8

Zhou, S. F.; Zheng, B. B.; Shimotsuma, Y.; Lu, Y. H.; Guo, Q. B.; Nishi, M.; Shimizu, M.; Miura, K.; Hirao, K.; Qiu, J. R. Heterogeneous-surface-mediated crystallization control. NPG Asia Mater. 2016, 8, e245.

9

Xu, X. H.; Zhang, W. F.; Yang, D. C.; Lu, W.; Qiu, J. B.; Yu, S. F. Phonon-assisted population inversion in lanthanide-doped upconversion Ba2LaF7 nanocrystals in glass-ceramics. Adv. Mater. 2016, 28, 8045-8050.

10

Yanes, A. C.; Santana-Alonso, A.; Méndez-Ramos, J.; del-Castillo, J.; Rodríguez, V. D. Novel sol-gel nano-glass-ceramics comprising Ln3+-doped YF3 nanocrystals: Structure and high efficient UV up-conversion. Adv. Funct. Mater. 2011, 21, 3136-3142.

11

Calvez, L.; Ma, H. L.; Lucas, J.; Zhang, X. H. Selenium-based glasses and glass ceramics transmitting light from the visible to the far-IR. Adv. Mater. 2007, 19, 129-132.

12

Zhou, S. F.; Jiang, N.; Miura, K.; Tanabe, S.; Shimizu, M.; Sakakura, M.; Shimotsuma, Y.; Nishi, M.; Qiu, J. R.; Hirao, K. Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence. J. Am. Chem. Soc. 2010, 132, 17945-17952.

13

Rosenflanz, A.; Frey, M.; Endres, B.; Anderson, T.; Richards, E.; Schardt, C. Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides. Nature 2004, 430, 761-764.

14

Lin, H.; Hu, T.; Cheng, Y.; Chen, M. X.; Wang, Y. S. Glass ceramic phosphors: Towards long-lifetime high-power white light-emitting-diode applications-a review. Laser Photonics Rev. 2018, 12, 1700344.

15

Xiao, Z. H.; Sun, X. Y.; Li, X. Y.; Wang, Y. Q.; Wang, Z. Q.; Zhang, B. W.; Li, X. L.; Shen, Z. X.; Kong, L. B.; Huang, Y. Z. Phase transformation of GeO2 glass to nanocrystals under ambient condition. Nano Lett. 2018, 18, 3290-3296.

16

Sagara, Y., Mutai, T., Yoshikawa, I.; Araki, K. Material design for piezochromic luminescence: Hydrogen-bond-directed assemblies of a pyrene derivative. J. Am. Chem. Soc. 2007, 129, 1520-1521.

17

Sagara, Y.; Kato, T. Stimuli-responsive luminescent liquid crystals: Change of photoluminescent colors triggered by a shear-Induced phase transition. Angew. Chem., Int. Ed. 2008, 47, 5175-5178.

18

Ito, H.; Muromoto, M.; Kurenuma, S.; Ishizaka, S.; Kitamura, N.; Sato, H.; Seki, T. Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nat. Commun. 2013, 4, 2009.

19

Nagura, K.; Saito, S.; Yusa, H.; Yamawaki, H.; Fujihisa, H.; Sato, H.; Shimoikeda, Y.; Yamaguchi, S. Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene. J. Am. Chem. Soc. 2013, 135, 10322-10325.

20

Davis, D. A.; Hamilton, A.; Yang, J. L.; Cremar, L. D.; Van Gough, D.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martinez, T. J.; White, S. R. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 2009, 459, 68-72.

21

Lee, C. K.; Davis, D. A.; White, S. R.; Moore, J. S.; Sottos, N. R.; Braun, P. V. Force-induced redistribution of a chemical equilibrium. J. Am. Chem. Soc. 2010, 132, 16107-16111.

22

Jeong, S. M.; Song, S.; Joo, K. I.; Kim, J.; Hwang, S. H.; Jeong, J.; Kim, H. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ. Sci. 2014, 7, 3338-3346.

23

Chandra, V. K.; Chandra, B. P.; Jha, P. Strong luminescence induced by elastic deformation of piezoelectric crystals. Appl. Phys. Lett. 2013, 102, 241105.

24

Timilsina, S.; Lee, K. H.; Jang, I. Y.; Kim, J. S. Mechanoluminescent determination of the mode I stress intensity factor in SrAl2O4: Eu2+, Dy3+. Acta Mater. 2013, 61, 7197-7206.

25

Peng, D. F.; Chen, B.; Wan, F. Recent advances in doped mechanoluminescent phosphors. ChemPlusChem 2015, 80, 1209-1215.

26

Xu, C. N.; Watanabe, T.; Akiyama, M.; Zheng, X. G. Direct view of stress distribution in solid by mechanoluminescence. Appl. Phys. Lett. 1999, 74, 2414-2416.

27

Xie, Y. J.; Li, Z. Triboluminescence: Recalling interest and new aspects. Chem 2018, 4, 943-971.

28

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.

29

Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394-405.

30

Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745-750.

31

He, X. H.; Qiu, Y. C.; Yang S. H. Fully-inorganic trihalide perovskite nanocrystals: A new research frontier of optoelectronic materials. Adv. Mater. 2017, 29, 1700775.

32

Quan, L. N.; de Arquer, F. P. G.; Sabatini, R. P.; Sargent, E. H. Perovskites for light emission. Adv. Mater. 2018, 30, 1801996.

33

Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008-16011.

34

Ai, B.; Liu, C.; Wang, J.; Xie, J.; Han, J. J.; Zhao, X. J. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses. J. Am. Ceram. Soc. 2016, 99, 2875-2877.

35

Ravi-Chandar, K.; Knauss, W. G. An experimental investigation into dynamic fracture: Ⅱ. Microstructural aspects. Int. J. Fracture 1984, 26, 65-80.

36

Milman, V. Y.; Stelmashenko, N. A.; Blumenfeld, R. Fracture surfaces: A critical review of fractal studies and a novel morphological analysis of scanning tunneling microscopy measurements. Prog. Mater. Sci. 1994, 38, 425-474.

37

Mecholsky, J. J.; Gonzalez, A. C.; Freiman, S. W. Fractographic analysis of delayed failure in soda-lime glass. J. Am. Ceram. Soc. 1979, 62, 577-580.

38

Freiman S. The fracture of glass: Past, present, and future. Int. J. Appl. Glass Sci. 2012, 3, 89-106.

39

Mecholsky, J. J., Jr.; Freiman, S. W. Relationship between fractal geometry and fractography. J. Am. Ceram. Soc. 1991, 74, 3136-3138.

40

Cha, J. H.; Han, J. H.; Yin, W. P.; Park, C.; Park, Y.; Ahn, T. K.; Cho, J. H.; Jung, D. Y. Photoresponse of CsPbBr3 and Cs4PbBr6 perovskite single crystals. J. Phys. Chem. Lett. 2017, 8, 565-570.

41

Hayashi, A.; Konishi, T.; Tadanaga, K.; Minami, T.; Tatsumisago, M. Preparation and characterization of SnO-P2O5 glasses as anode materials for lithium secondary batteries. J. Non-Cryst. Solids 2004, 345-346, 478-483.

42

Zhao, J. J.; Ma, R. H.; Chen, X. K.; Kang, B. B.; Qiao, X. S.; Du, J. C.; Fan, X. P.; Ross, U.; Roiland, C.; Lotnyk, A. et al. From phase separation to nanocrystallization in fluorosilicate glasses: Structural design of highly luminescent glass-ceramics. J. Phys. Chem. C 2016, 120, 17726-17732.

43

Lin, C. G.; Bocker, C.; Rüssel, C. Nanocrystallization in oxyfluoride glasses controlled by amorphous phase separation. Nano Lett. 2015, 15, 6764-6769.

44

Bhattacharyya, S.; Bocker, C.; Heil, T.; Jinschek, J. R.; Höche, T.; Rüssel, C.; Kohl, H. Experimental evidence of self-limited growth of nanocrystals in glass. Nano Lett. 2009, 9, 2493-2496.

45

Herrmann, A.; Tylkowski, M.; Bocker, C.; Rüssel, C. Cubic and hexagonal NaGdF4 crystals precipitated from an aluminosilicate glass: Preparation and luminescence properties. Chem. Mater. 2013, 25, 2878-2884.

46

Jiang, Z. H.; Zhang, Q. Y. The structure of glass: A phase equilibrium diagram approach. Prog. Mater. Sci. 2014, 61, 144-215.

47

Bocker, C.; Rüssel, C.; Avramov, I. Transparent nano crystalline glass-ceramics by interface controlled crystallization. Int. J. Appl. Glass Sci. 2013, 4, 174-181.

48

de Pablos-Martín, A.; Mather, G. C.; Muñoz, F.; Bhattacharyya, S.; Höche, T.; Jinschek, J. R.; Heil, T.; Durán, A.; Pascual, M. J. Design of oxy-fluoride glass-ceramics containing NaLaF4 nano-crystals. J. Non-Cryst. Solids 2010, 356, 3071-3079.

49

Li, T.; Dong, S. J.; Wang, E. K. A lead (Ⅱ)-driven DNA molecular device for turn-on fluorescence detection of lead (Ⅱ) ion with high selectivity and sensitivity. J. Am. Chem. Soc. 2010, 132, 13156-13157.

Nano Research
Pages 1049-1054
Cite this article:
Xiang X, Lin H, Li R, et al. Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications. Nano Research, 2019, 12(5): 1049-1054. https://doi.org/10.1007/s12274-019-2338-3
Topics:

914

Views

58

Crossref

N/A

Web of Science

64

Scopus

8

CSCD

Altmetrics

Received: 26 November 2018
Revised: 11 February 2019
Accepted: 13 February 2019
Published: 15 March 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return