AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging

Ling Liang1,§Na Chen1,§Yiyi Jia1Qinqin Ma2Jie Wang2Quan Yuan1,2( )Weihong Tan1
Molecular Science and Biomedicine Laboratory,Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University,Changsha,410082,China;
Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education),College of Chemistry and Molecular Sciences, Wuhan University,Wuhan,430072,China;

§ Ling Liang and Na Chen contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Persistent luminescence nanoprobes (PLNPs) can remain luminescent after ceasing excitation. Due to the ultra-long decay time of persistent luminescence (PersL), autofluorescence interference can be efficiently eliminated by collecting PersL signal after autofluorescence decays completely, thus the imaging contrast and sensing sensitivity can be significantly improved. Since near-infrared (NIR) light shows reduced scattering and absorption coefficient in penetrating biological organs or tissues, near-infrared persistent luminescence nanoprobes (NIR PLNPs) possess deep tissue penetration and offer a bright prospect in the areas of in vivo biosensing/bioimaging. In this review, we firstly summarize the design of different types of NIR PLNPs for biosensing/bioimaging, such as transition metal ions-doped NIR PLNPs, lanthanide ions-doped NIR PLNPs, organic molecules-based NIR PLNPs, and semiconducting polymer self-assembled NIR PLNPs. Notably, organic molecules-based NIR PLNPs and semiconductor self-assembled NIR PLNPs, for the first time, were introduced to the review of PLNPs. Secondly, the effects of different types of charge carriers on NIR PersL and luminescence decay of NIR PLNPs are significantly emphasized so as to build up an in-depth understanding of their luminescence mechanism. It includes the regulation of valence band and conduction band of different host materials, alteration of defect types, depth and concentration changes caused by ion doping, effective radiation transitions and energy transfer generated by different luminescence centers. Given the design and potential of NIR PLNPs as long-lived luminescent materials, the current challenges and future perspective in this rapidly growing field are also discussed.

References

1

Kabe, R.; Adachi, C. Organic long persistent luminescence. Nature 2017, 550, 384-387.

2

Zagorovsky, K.; Chan, W. C. W. Illuminating the deep. Nat. Mater. 2013, 12, 285-287.

3

Vahrmeijer, A. L.; Hutteman, M.; van der Vorst, J. R.; van de Velde, C. J. H.; Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507-518.

4

Zwier, J. M.; Hildebrandt, N. Time-gated FRET detection for multiplexed biosensing. In Reviews in Fluorescence 2016. Geddes, C. D., Ed.; Springer: Cham, 2017; pp 17-43.

5

Baggaley, E.; Weinstein, J. A.; Williams, J. A. G. Time-resolved emission imaging microscopy using phosphorescent metal complexes: Taking FLIM and PLIM to new lengths. In Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents. Lo, K. K. W., Ed.; Springer: Berlin Heidelberg, 2014; p 1.

6

Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 2014, 13, 418-426.

7

Berezin, M. Y.; Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 2010, 110, 2641-2684.

8

Chen, Y.; Periasamy, A. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization. Microsc. Res. Tech. 2004, 63, 72-80.

9

Zhang, K. Y.; Yu, Q.; Wei, H. J.; Liu, S. J.; Zhao, Q.; Huang, W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 2018, 118, 1770-1839.

10

van den Eeckhout, K.; Smet, P. F.; Poelman, D. Persistent luminescence in Eu2+-doped compounds: A review. Materials 2010, 3, 2536-2566.

11

Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y. A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+. J. Electrochem. Soc. 1996, 143, 2670-2673.

12

Sun, H. B.; Liu, S. J.; Lin, W. P.; Zhang, K. Y.; Lv, W.; Huang, X.; Huo, F. W.; Yang, H. R.; Jenkins, G.; Zhao, Q. et al. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 2014, 5, 3601.

13

Hanaoka, K.; Kikuchi, K.; Kobayashi, S.; Nagano, T. Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system. J. Am. Chem. Soc. 2007, 129, 13502-13509.

14

Baggaley, E.; Botchway, S. W.; Haycock, J. W.; Morris, H.; Sazanovich, I. V.; Williams, J. A. G.; Weinstein, J. A. Long-lived metal complexes open up microsecond lifetime imaging microscopy under multiphoton excitation: From FLIM to PLIM and beyond. Chem. Sci. 2014, 5, 879-886.

15

Li, L.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J. Am. Chem. Soc. 2011, 133, 1176-1179.

16

Raut, S. L.; Fudala, R.; Rich, R.; Kokate, R. A.; Chib, R.; Gryczynski, Z.; Gryczynski, I. Long lived BSA Au clusters as a time gated intensity imaging probe. Nanoscale 2014, 6, 2594-2597.

17

Kandpal, S. K.; Goundie, B.; Wright, J.; Pollock, R. A.; Mason, M. D.; Meulenberg, R. W. Investigation of the emission mechanism in milled SrAl2O4: Eu, Dy using optical and synchrotron X-ray spectroscopy. ACS Appl. Mater. Interfaces 2011, 3, 3482-3486.

18

Wang, J.; Ma, Q. Q.; Liu, H. Y.; Wang, Y. Q.; Shen, H. J.; Hu, X. X; Ma, C.; Yuan, Q.; Tan, W. H. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition. Anal. Chem. 2017, 89, 12764-12770.

19

Li, Z. J.; Zhang, Y. W.; Wu, X.; Huang, L.; Li, D. S.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm "luminous pearls" with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 2015, 137, 5304-5307.

20

Aitasalo, T.; Hietikko, A.; Hreniak, D.; Hölsä, J.; Lastusaari, M.; Niittykoski, J.; Stręk, W. Luminescence properties of BaMg2Si2O7: Eu2+, Mn2+. J. Alloys Compd. 2008, 451, 229-231.

21

Lin, X. H.; Zhang, R. L.; Tian, X. M.; Li, Y.; Du, B. S.; Nie, J. M.; Li, Z. Z.; Chen, L.; Ren, J. J.; Qiu, J. R. et al. Coordination geometry-dependent multi-band emission and atypically deep-trap-dominated NIR persistent luminescence from chromium-doped aluminates. Adv. Opt. Mater. 2018, 6, 1701161.

22

Zhang, Y.; Huang, R.; Lin, Z. X.; Song, J.; Wang, X.; Guo, Y. Q.; Song, C.; Yu, Y. Co-dopant influence on near-infrared luminescence properties of Zn2SnO4: Cr3+, Eu3+ ceramic discs. J. Alloys Compd. 2016, 686, 407-412.

23

Jia, D. D.; Jia, W. Y.; Evans, D. R.; Dennis, W. M.; Liu, H. M.; Zhu, J.; Yen, W. M. Trapping processes in CaS: Eu2+, Tm3+. J. Appl. Phys. 2000, 88, 3402-3407.

24

Lecointre, A.; Bessière, A.; Bos, A. J. J.; Dorenbos, P.; Viana, B.; Jacquart, S. Designing a red persistent luminescence phosphor: The example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy). J. Phys. Chem. C 2011, 115, 4217-4227.

25

Zheng, B.; Chen, H. B.; Zhao, P. Q.; Pan, H. Z.; Wu, X. L.; Gong, X. Q.; Wang, H. J.; Chang, J. Persistent luminescent nanocarrier as an accurate tracker in vivo for near infrared-remote selectively triggered photothermal therapy. ACS Appl. Mater. Interfaces 2016, 8, 21603-21611.

26

Zhang, H. W.; Fu, X. Y.; Niu, S. Y.; Xin, Q. Blue luminescence of nanocrystalline CaZrO3: Tm phosphors synthesized by a modified Pechini sol-gel method. J. Lumin. 2008, 128, 1348-1352.

27

Wu, Y. L.; Li, Y.; Qin, X. X.; Chen, R. C.; Wu, D. K.; Liu, S. J.; Qiu, J. R. Dual mode NIR long persistent phosphorescence and NIR-to-NIR Stokes luminescence in La3Ga5GeO14: Cr3+, Nd3+ phosphor. J. Alloys Compd. 2015, 649, 62-66.

28

Kong, J. T.; Zheng, W.; Liu, Y. S.; Li, R. F.; Ma, E.; Zhu, H. M.; Chen, X. Y. Persistent luminescence from Eu3+ in SnO2 nanoparticles. Nanoscale 2015, 7, 11048-11054.

29

Abdukayum, A.; Chen, J. T.; Zhao, Q.; Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125-14133.

30

Ma, Q. Q.; Wang, J.; Zheng, W.; Wang, Q.; Li, Z. H.; Cong, H. J.; Liu, H. J.; Chen, X. Y.; Yuan, Q. Controlling disorder in host lattice by hetero-valence ion doping to manipulate luminescence in spinel solid solution phosphors. Sci. China Chem. 2018, 61, 1624-1629.

31

Liu, H. Y.; Hu, X. X.; Wang, J.; Liu, M.; Wei, W.; Yuan, Q. Direct low-temperature synthesis of ultralong persistent luminescence nanobelts based on a biphasic solution-chemical reaction. Chin. Chem. Lett. 2018, 29, 1641-1644.

32

Song, L.; Li, P. P.; Yang, W.; Lin, X. H.; Liang, H.; Chen, X. F.; Liu, G.; Li, J.; Yang, H. H. Low-dose X-ray activation of W(VI)-doped persistent luminescence nanoparticles for deep-tissue photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1707496.

33

Wang, X. J.; Jia, D. D.; Yen, W. M. Mn2+ activated green, yellow, and red long persistent phosphors. J. Lumin. 2003, 102-103, 34-37.

34

Zheng, B.; Bai, Y.; Chen, H. B.; Pan, H. Z.; Ji, W. Y.; Gong, X. Q.; Wu, X. L.; Wang, H. J.; Chang, J. Near-infrared light-excited upconverting persistent nanophosphors in vivo for imaging-guided cell therapy. ACS Appl. Mater. Interfaces 2018, 10, 19514-19522.

35

Song, L.; Lin, X. H.; Song, X. R.; Chen, S.; Chen, X. F.; Li, J.; Yang, H. H. Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale 2017, 9, 2718-2722.

36

Niioka, H.; Yamasaki, J.; Dung, D. T. K.; Miyake, J. Enhancement of near-infrared luminescence of Y2O3: Ln, Yb (Ln = Tm, Ho, Er) by Li-ion doping for cellular bioimaging. Chem. Lett. 2016, 45, 1406-1408.

37

Wang, B.; Lin, H.; Xu, J.; Chen, H.; Lin, Z. B.; Huang, F.; Wang, Y. S. Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7: Pr3+. Inorg. Chem. 2015, 54, 11299-11306.

38

Wang, Y. Q.; Wang, J.; Ma, Q. Q.; Li, Z. H.; Yuan, Q. Recent progress in background-free latent fingerprint imaging. Nano Res. 2018, 11, 5499-5518.

39

Li, N.; Li, Y. H.; Han, Y. Y.; Pan, W.; Zhang, T. T.; Tang, B. A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo. Anal. Chem. 2014, 86, 3924-3930.

40

Abdukayum, A.; Yang, C. X.; Zhao, Q.; Chen, J. T.; Dong, L. X.; Yan, X. P. Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo. Anal. Chem. 2014, 86, 4096-4101.

41

Shi, J. P.; Sun, X.; Li, J. L.; Man, H. Z.; Shen, J. S.; Yu, Y. K.; Zhang, H. W. Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 2015, 37, 260-270.

42

Teng, Y.; Zhou, J. J.; Khisro, S. N.; Zhou, S. F.; Qiu, J. R. Persistent luminescence of SrAl2O4: Eu2+, Dy3+, Cr3+ phosphors in the tissue transparency window. Mater. Chem. Phys. 2014, 147, 772-776.

43

Wu, S. Q.; Chi, C. W.; Yang, C. X.; Yan, X. P. Penetrating peptide-bioconjugated persistent nanophosphors for long-term tracking of adipose-derived stem cells with superior signal-to-noise ratio. Anal. Chem. 2016, 88, 4114-4121.

44

Lu, Y. C.; Yang, C. X.; Yan, X. P. Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging. Nanoscale 2015, 7, 17929-17937.

45

Fu, X. Y.; Liu, C. L.; Shi, J. P.; Man, H. Z.; Xu, J.; Zhang, H. W. Long persistent near infrared luminescence nanoprobes LiGa5O8: Cr3+-PEG-OCH3 for in vivo imaging. Opt. Mater. 2014, 36, 1792-1797.

46

Nie, J. M.; Li, Y.; Liu, S. S.; Chen, Q. Q.; Xu, Q.; Qiu, J. R. Tunable long persistent luminescence in the second near-infrared window via crystal field control. Sci. Rep. 2017, 7, 12392.

47

le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J. P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 9266-9271.

48

Lin, X. H.; Song, L.; Chen, S.; Chen, X. F.; Wei, J. J.; Li, J. Y.; Huang, G. M.; Yang, H. H. Kiwifruit-like persistent luminescent nanoparticles with high-performance and in situ activable near-infrared persistent luminescence for long-term in vivo bioimaging. ACS Appl. Mater. Interfaces 2017, 9, 41181-41187.

49

Xu, J.; Murata, D.; Ueda, J.; Tanabe, S. Near-infrared long persistent luminescence of Er3+ in garnet for the third bio-imaging window. J. Mater. Chem. C 2016, 4, 11096-11103.

50

Li, Y.; Gecevicius, M.; Qiu, J. R. Long persistent phosphors—From fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090-2136.

51

Lécuyer, T.; Teston, E.; Ramirez-Garcia, G.; Maldiney, T.; Viana, B.; Seguin, J.; Mignet, N.; Scherman, D.; Richard, C. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 2016, 6, 2488-2524.

52

Sun, S. K.; Wang, H. F.; Yan, X. P. Engineering persistent luminescence nanoparticles for biological applications: From biosensing/bioimaging to theranostics. Acc. Chem. Res. 2018, 51, 1131-1143.

53

Wang, J.; Ma, Q. Q.; Wang, Y. Q.; Shen, H. J.; Yuan, Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale 2017, 9, 6204-6218.

54

Singh, S. K. Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications. RSC Adv. 2014, 4, 58674-58698.

55

Elzerman, J. M.; Hanson, R.; Willems van Beveren, L. H.; Witkamp, B.; Vandersypen, L. M. K.; Kouwenhoven, L. P. Single-shot read-out of an individual electron spin in a quantum dot. Nature 2004, 430, 431-435.

56

Zubiaga, A.; Plazaola, F.; García, J. A.; Tuomisto, F.; Muñoz-Sanjosé, V.; Tena-Zaera, R. Positron annihilation lifetime spectroscopy of ZnO bulk samples. Phys. Rev. B 2007, 76, 085202.

57

Dutta, S.; Chattopadhyay, S.; Sarkar, A.; Chakrabarti, M.; Sanyal, D.; Jana, D. Role of defects in tailoring structural, electrical and optical properties of ZnO. Prog. Mater. Sci. 2009, 54, 89-136.

58

Bioul, G.; Davio, M. Taylor expansions of Boolean functions and of their derivatives. Philips Res. Rep. 1972, 27, 1-6.

59

Bessière, A.; Jacquart, S.; Priolkar, K.; Lecointre, A.; Viana, B.; Gourier, D. ZnGa2O4: Cr3+: A new red long-lasting phosphor with high brightness. Opt. Express 2011, 19, 10131-10137.

60

Allix, M.; Chenu, S.; Véron, E.; Poumeyrol, T.; Kouadri-Boudjelthia, E. A.; Alahraché, S.; Porcher, F.; Massiot, D.; Fayon, F. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4. Chem. Mater. 2013, 25, 1600-1606.

61

Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. Sect. A 1976, 32, 751-767.

62

Kahan, H. M.; Macfarlane, R. M. Optical and microwave spectra of Cr3+ in the Spinel ZnGa2O4. J. Chem. Phys. 1971, 54, 5197-5205.

63

Dhak, P.; Gayen, U. K.; Mishra, S.; Pramanik, P.; Roy, A. Optical emission spectra of chromium doped nanocrystalline zinc gallate. J. Appl. Phys. 2009, 106, 063721.

64

Zhou, Z. H.; Zheng, W.; Kong, J. T.; Liu, Y.; Huang, P.; Zhou, S. Y.; Chen, Z.; Shi, J. L.; Chen, X. Y. Rechargeable and LED-activated ZnGa2O4: Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. Nanoscale 2017, 9, 6846-6853.

65

van Gorkom, G. G. P.; Henning, J. C. M.; van Stapele, R. P. Optical spectra of Cr3+ pairs in the spinel ZnGa2O4. Phys. Rev. B 1973, 8, 955-973.

66

Dai, W. B.; Lei, Y. F.; Ye, S.; Song, E. H.; Chen, Z.; Zhang, Q. Y. Mesoporous nanoparticles Gd2O3@mSiO2/ZnGa2O4: Cr3+, Bi3+ as multifunctional probes for bioimaging. J. Mater. Chem. B 2016, 4, 1842-1852.

67

Zou, R.; Huang, J. J.; Shi, J. P.; Huang, L.; Zhang, X. J.; Wong, K. L.; Zhang, H. W.; Jin, D. Y.; Wang, J.; Su, Q. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Res. 2017, 10, 2070-2082.

68

Srivastava, B. B.; Kuang, A.; Mao, Y. B. Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route. Chem. Commun. 2015, 51, 7372-7375.

69

Teston, E.; Richard, S.; Maldiney, T.; Lièvre, N.; Wang, G. Y.; Motte, L.; Richard, C.; Lalatonne, Y. Non-aqueous sol-gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging. Chem. —Eur. J. 2015, 21, 7350-7354.

70

Fonger, W. H.; Struck, C. W. Temperature dependences of Cr3+ radiative and nonradiative transitions in ruby and emerald. Phys. Rev. B 1975, 11, 3251-3260.

71

Yang, J.; Liu, Y. X.; Zhao, Y. Y.; Gong, Z.; Zhang, M.; Yan, D. T.; Zhu, H. C.; Liu, C. G.; Xu, C. S.; Zhang, H. Ratiometric afterglow nanothermometer for simultaneous in situ bioimaging and local tissue temperature sensing. Chem. Mater. 2017, 29, 8119-8131.

72

Yan, W. Z.; Liu, F.; Lu, Y. Y.; Wang, X. J.; Yin, M.; Pan, Z. W. Near infrared long-persistent phosphorescence in La3Ga5GeO14: Cr3+ phosphor. Opt. Express 2010, 18, 20215-20221.

73

Pan, Z. W.; Lu, Y. Y.; Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 2011, 11, 58-63.

74

Wang, J.; Ma, Q. Q.; Hu, X. X.; Liu, H. Y.; Zheng, W.; Chen, X. Y.; Yuan, Q.; Tan, W. H. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 2017, 11, 8010-8017.

75

Li, Y.; Zhou, S. F.; Li, Y. Y.; Sharafudeen, K.; Ma, Z. J.; Dong, G. P.; Peng, M. Y.; Qiu, J. R. Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging. J. Mater. Chem. C 2014, 2, 2657-2663.

76

Li, Y.; Li, Y. Y.; Chen, R. C.; Sharafudeen, K.; Zhou, S. F.; Gecevicius, M.; Wang, H. H.; Dong, G. P; Wu, Y. L; Qin, X. X. et al. Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. NPG Asia Mater. 2015, 7, e180.

77

Jin, Y. H.; Hu, Y. H.; Chen, L.; Ju, G. F.; Wu, H. Y.; Mu, Z. F.; He, M.; Xue, F. H. Luminescent properties of a green long persistent phosphor Li2MgGeO4: Mn2+. Opt. Mater. Express 2016, 6, 929-937.

78

Takahashi, Y.; Ando, M.; Ihara, R.; Fujiwara, T. Green-emissive Mn-activated nanocrystallized glass with willemite-type Zn2GeO4. Opt. Mater. Express 2011, 1, 372-378.

79

Terraschke, H.; Wickleder, C. UV, blue, green, yellow, red, and small: Newest developments on Eu2+-doped nanophosphors. Chem. Rev. 2015, 115, 11352-11378.

80

Cheng, J. G.; Li, P. L.; Wang, Z. J.; Li, Z. L.; Tian, M. M.; Wang, C.; Yang, Z. P. Color selective manipulation in Li2ZnGe3O8: Mn2+ by multiple-cation substitution on different crystal-sites. Dalton Trans. 2018, 47, 4293-4300.

81

Maldiney, T.; Lecointre, A.; Viana, B.; Bessière, A.; Bessodes, M.; Gourier, D.; Richard, C.; Scherman, D. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 2011, 133, 11810-11815.

82

Wang, J.; Ma, Q. Q.; Zheng, W.; Liu, H. Y.; Yin, C. Q.; Wang, F. B.; Chen, X. Y.; Yuan, Q.; Tan, W. H. One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 2017, 11, 8185-8191.

83

Li, Z. H.; Wang, Q.; Wang, Y. Q.; Ma, Q. Q.; Wang, J.; Li, Z. H.; Li, Y. X.; Lv, X. B.; Wei, W.; Chen, L. et al. Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition. Nano Res. 2018, 11, 6167-6176.

84

Che, G. B.; Liu, C. B.; Li, X. Y.; Xu, Z. L.; Liu, Y.; Wang, H. Luminescence properties of a new Mn2+-activated red long-afterglow phosphor. J. Phys. Chem. Solids 2008, 69, 2091-2095.

85

Li, P. F.; Peng, M. Y.; Wondraczek, L.; Zhao, Y. Q.; Viana, B. Red to near infrared ultralong lasting luminescence from Mn2+-doped sodium gallium aluminum germanate glasses and (Al, Ga)-albite glass-ceramics. J. Mater. Chem. C 2015, 3, 3406-3415.

86

Zhou, Z.; Zhou, N.; Xia, M.; Yokoyama, M.; Hintzen, H. T. Research progress and application prospects of transition metal Mn4+-activated luminescent materials. J. Mater. Chem. C 2016, 4, 9143-9161.

87

Adachi, S.; Takahashi, T. Photoluminescent properties of K2GeF6: Mn4+ red phosphor synthesized from aqueous HF/KMnO4 solution. J. Appl. Phys. 2009, 106, 013516.

88

Hiltunen, L.; Hölsä, J.; Strek, W.; Jezowska-Trzebiatowska, B. Crystal structure of ((C4H9)4N)3(Pr(NCS)6). J. Less-Common Met. 1987, 127, 225-230.

89

Jia, W.; Jia, D.; Rodriguez, T.; Evans, D. R.; Meltzer, R. S.; Yen, W. M. UV excitation and trapping centers in CaTiO3: Pr3+. J. Lumin. 2006, 119-120, 13-18.

90

Yin, S. Y.; Chen, D. H.; Tang, W. J. Combustion synthesis and luminescent properties of CaTiO3: Pr, Al persistent phosphors. J. Alloys Compd. 2007, 441, 327-331.

91

Li, Y.; Li, Y. Y.; Sharafudeen, K.; Dong, G. P.; Zhou, S. F.; Ma, Z. J.; Peng, M. Y.; Qiu, J. R. A strategy for developing near infrared long-persistent phosphors: Taking MAlO3: Mn4+, Ge4+ (M = La, Gd) as an example. J. Mater. Chem. C 2014, 2, 2019-2027.

92

Du, J. R.; De Clercq, Q. O.; Korthout, K.; Poelman, D. LaAlO3: Mn4+ as near-infrared emitting persistent luminescence phosphor for medical imaging: A charge compensation study. Materials 2017, 10, 1422.

93

Zhang, X. W.; Nie, J. M.; Liu, S. S.; Li, Y.; Qiu, J. R. Deep-red photoluminescence and long persistent luminescence in double perovstkite-type La2MgGeO6: Mn4+. J. Am. Ceram. Soc. 2018, 101, 1576-1584.

94

Xue, F. H.; Hu, Y. H.; Chen, L.; Wu, H. Y.; Ju, G. F.; Wang, T.; Yang, L. A novel rare-earth free red long-persistent phosphor: Mg2GeO4: Mn4+. Ceram. Int. 2017, 43, 15141-15145.

95

Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 2009, 109, 4283-4374.

96

Bünzli, J. C. G. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 2006, 39, 53-61.

97

Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161-5214.

98

Zhu, X. J.; Su, Q. Q.; Feng, W.; Li, F. Y. Anti-Stokes shift luminescent materials for bio-applications. Chem. Soc. Rev. 2017, 46, 1025-1039.

99

Wang, F.; Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 2014, 47, 1378-1385.

100

Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 2013, 42, 6924-6958.

101

Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343-2389.

102

Bünzli, J. C. G.; Eliseeva, S. V. Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J. Rare Earths 2010, 28, 824-842.

103

Bünzli, J. C. G.; Pecharsky V. K. Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Oxford, 2013.

104

Smet, P.; Avci, N.; Poelman, D. Red persistent luminescence in Ca2SiS4: Eu, Nd. J. Electrochem. Soc. 2009, 156, H243-H248.

105

Liang, Y. J.; Liu, F.; Chen, Y. F.; Wang, X. L.; Sun, K. N.; Pan, Z. W. Red/near-infrared/short-wave infrared multi-band persistent luminescence in Pr3+-doped persistent phosphors. Dalton Trans. 2017, 46, 11149-11153.

106

Dai, W. B.; Lei, Y. F.; Zhou, J.; Xu, M.; Chu, L. L.; Li, L.; Zhao, P.; Zhang, Z. H. Near-infrared quantum-cutting and long-persistent phosphor Ca3Ga2Ge3O12: Pr3+, Yb3+ for application in in vivo bioimaging and dye-sensitized solar cells. J. Alloys Compd. 2017, 726, 230-239.

107

Kamimura, S.; Xu, C. N.; Yamada, H.; Marriott, G.; Hyodo, K.; Ohno, T. Near-infrared luminescence from double-perovskite Sr3Sn2O7: Nd3+: A new class of probe for in vivo imaging in the second optical window of biological tissue. J. Ceram. Soc. Jpn. 2017, 125, 591-595.

108

Liang, Y. J.; Liu, F.; Chen, Y. F.; Wang, X. J.; Sun, K. N.; Pan, Z. W. New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared. Light: Sci. Appl. 2016, 5, e16124.

109

Zou, Z. H.; Wu, C.; Li, X. D.; Zhang, J. C.; Li, H. H.; Wang, D. Y.; Wang, Y. H. Near-infrared persistent luminescence of Yb3+ in perovskite phosphor. Opt. Lett. 2017, 42, 4510-4512.

110

Lv, Y.; Wang, L.; Zhuang, Y. X.; Zhou, T. L.; Xie, R. J. Discovery of the Yb2+-Yb3+ couple as red-to-NIR persistent luminescence emitters in Yb-activated (Ba1-xSrx)AlSi5O2N7 phosphors. J. Mater. Chem. C 2017, 5, 7095-7101.

111

Caratto, V.; Locardi, F.; Costa, G. A.; Masini, R.; Fasoli, M.; Panzeri, L.; Martini, M.; Bottinelli, E.; Gianotti, E.; Miletto, I. NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: The effect of dopants. ACS Appl. Mater. Interfaces 2014, 6, 17346-17351.

112

Gong, X. Y.; Cui, R. R.; Li, X. C.; Huang, W. C.; Deng, C. Y. The photoluminescence and afterglow properties of Ca2SnO4: Sm3+ phosphor. J. Mater. Sci. : Mater. Electron. 2018, 29, 5668-5674.

113

Ju, G. F.; Hu, Y. H.; Chen, L.; Jin, Y. H.; Li, Y. Persistent luminescence in BaGd2O4: Dy3+: From blue to infrared. Appl. Phys. A 2018, 124, 39.

114

Chen, W. B.; Wang, Y. H.; Zeng, W.; Li, G.; Guo, H. J. Design, synthesis and characterization of near-infrared long persistent phosphors Ca4 (PO4)2O: Eu2+, R3+ (R = Lu, La, Gd, Ce, Tm, Y). RSC Adv. 2016, 6, 331-337.

115

Zhang, X. M.; Zhang, J. H.; Zhang, X.; Chen, L.; Lu, S. Z.; Wang, X. J. Enhancement of red fluorescence and afterglow in CaTiO3: Pr3+ by addition of Lu2O3. J. Lumin. 2007, 122-123, 958-960.

116

Takasaki, H; Tanabe, S.; Hanada, T. Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor. J. Ceram. Soc. Jpn. 1996, 104, 322-326.

117

Yu, N. Y.; Liu, F.; Li, X. F.; Pan, Z. W. Near infrared long-persistent phosphorescence in SrAl2O4: Eu2+, Dy3+, Er3+ phosphors based on persistent energy transfer. Appl. Phys. Lett. 2009, 95, 231110.

118

Klink, S. I.; Grave, L.; Reinhoudt, D. N.; van Veggel, F. C. J. M.; Werts, M. H. V.; Geurts, F. A. J.; Hofstraat, J. W. A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ complexes. J. Phys. Chem. A 2000, 104, 5457-5468.

119

Vicentini, G.; Zinner, L. B.; Zukerman-Schpector, J.; Zinner, K. Luminescence and structure of europium compounds. Coord. Chem. Rev. 2000, 196, 353-382.

120

Adam, J. L.; Docq, A. D.; Lucas, J. Optical transitions of Dy3+ ions in fluorozirconate glass. J. Solid State Chem. 1988, 75, 403-412.

121

Welsher, K.; Sherlock, S. P.; Dai, H. J. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA 2011, 108, 8943-8948.

122

Hong, G. S.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L. M.; Huang, N. F.; Cooke, J. P.; Dai, H. J. Multifunctional in vivo vascular imaging using near-infrared Ⅱ fluorescence. Nat. Med. 2012, 18, 1841-1846.

123

Dorenbos, P. Systematic behaviour in trivalent lanthanide charge transfer energies. J. Phys. : Condens. Matter 2003, 15, 8417-8434.

124

Bos, A. J. J.; Dorenbos, P.; Bessière, A.; Viana, B. Lanthanide energy levels in YPO4. Radiat. Meas. 2008, 43, 222-226.

125

Lyu, T. S.; Dorenbos, P. Charge carrier trapping processes in lanthanide doped LaPO4, GdPO4, YPO4, and LuPO4. J. Mater. Chem. C 2018, 6, 369-379.

126

Luo, H. D.; Bos, A. J. J.; Dorenbos, P. Controlled electron-hole trapping and detrapping process in GdAlO3 by valence band engineering. J. Phys. Chem. C 2016, 120, 5916-5925.

127

Xia, Z. G.; Li Q.; Sun J. Y. Greenish-yellow light-emitting, long-lasting phosphorescence in Eu2+-doped CaO-CaBr2-SiO2 phosphor system. Chem. Lett. 2006, 35, 764-765.

128

Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 1953, 21, 836-850.

129

Főrster T. 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 1959, 27, 7-17.

130

Jinnai, K.; Kabe, R.; Adachi, C. Wide-range tuning and enhancement of organic long-persistent luminescence using emitter dopants. Adv. Mater. 2018, 30, 1800365.

131

Zhu, C. L.; Liu, L. B.; Yang, Q.; Lv, F. T.; Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 2012, 112, 4687-4735.

132

Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570-6597.

133

Wu, C. F.; Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem., Int. Ed. 2013, 52, 3086-3109.

134

Pu, K. Y.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J. G.; Gambhir, S. S.; Bao, Z. N.; Rao, J. H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014, 9, 233-239.

135

Shuhendler, A. J.; Pu, K. Y.; Cui, L. N.; Uetrecht, J. P.; Rao, J. H. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol. 2014, 32, 373-380.

136

Pu, K. Y.; Shuhendler, A. J.; Rao, J. H. Semiconducting polymer nanoprobe for in vivo imaging of reactive oxygen and nitrogen species. Angew. Chem., Int. Ed. 2013, 52, 10325-10329.

137

Palner, M.; Pu, K. Y.; Shao, S.; Rao, J. H. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem. 2015, 127, 11639-11642.

138

Miao, Q. Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H, W.; Liu, X. G.; Jokerst, J. V.; Pu, K. Y. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 2017, 35, 1102-1110.

139

Xie, C.; Zhen, X.; Miao, Q. Q.; Lyu, Y.; Pu, K. Y. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv. Mater. 2018, 30, 1801331.

140

Katayama, Y.; Kayumi, T.; Ueda, J.; Tanabe, S. Enhanced persistent red luminescence in Mn2+-doped (Mg, Zn)GeO3 by electron trap and conduction band engineering. Opt. Mater. 2018, 79, 147-151.

Nano Research
Pages 1279-1292
Cite this article:
Liang L, Chen N, Jia Y, et al. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Research, 2019, 12(6): 1279-1292. https://doi.org/10.1007/s12274-019-2343-6
Topics:
Part of a topical collection:

1312

Views

131

Crossref

N/A

Web of Science

137

Scopus

19

CSCD

Altmetrics

Received: 11 December 2018
Revised: 12 February 2019
Accepted: 15 February 2019
Published: 29 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return