AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly efficient K-Fe/C catalysts derived from metal-organic frameworks towards ammonia synthesis

Pengqi Yan1,§Wenhan Guo2,§Zibin Liang2Wei Meng2Zhen Yin3Siwei Li1Mengzhu Li1Mengtao Zhang1Jie Yan1Dequan Xiao4Ruqiang Zou2( )Ding Ma1( )
Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESATPeking UniversityBeijing100871China
Beijing Key Laboratory for Theory and Technology of Advanced Battery MaterialsDepartment of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing10087China
State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Chemistry and Chemical EngineeringTianjin Polytechnic UniversityTianjin300387China
Department of Chemistry and Chemical EngineeringUniversity of New Haven, West HavenCT06516USA

§ Pengqi Yan and Wenhan Guo contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Fe-based catalysts have been discovered as the best elementary metal-based heterogeneous catalysts for the ammonia synthesis in industrial application during the last century. Herein, a novel and scalable strategy is developed to prepare the K-promoted Fe/C catalyst with extremely high Fe loading (> 50 wt.%) through pyrolysis of the Fe-based metal-organic framework (MOF) xerogel. The obtained K-Fe/C catalysts exhibited superior activity and stability towards ammonia synthesis. The weight-specific reaction rate of Fe/C with K2O as promoter can achieve 12.4 mmol·g-1·h-1 at 350 ℃ and 30.4 mmol·g-1·h-1 at 400 ℃, approximately four and two times higher than that of the commercial fused-iron catalyst (3.4 mmol·g-1·h-1 at 350 ℃ and 16.7 mmol·g-1·h-1 at 400 ℃) under the same condition, respectively. The excellent performance of K-Fe/C can be ascribed to the inherited structure derived from the metal-organic frame precursors and the promotion of potassium, which can modify the binding energy of reactant molecules on the Fe surface, transfer electrons to iron for effective activation of nitrogen, prevent agglomeration of Fe nanoparticle (NPs) and restrain side reaction of carbon matrix to methane.

Electronic Supplementary Material

Download File(s)
12274_2019_2349_MOESM1_ESM.pdf (6.4 MB)

References

1

Appl, M. Fundamentals of the synthesis reaction. In Ammonia: Principles and Industrial Practice. Appl, M., Ed.; Wiley-VCH: Weinheim, 2007; pp 9-63.

2

Ertl, G. Molecules at surfaces: 100 years of physical chemistry in berlin-dahlem. Angew. Chem., Int. Ed. 2013, 52, 52-60.

3

Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 2017, 286, 2-13.

4

Licht, S.; Cui, B.C.; Wang, B. H.; Li, F. F.; Lau, J.; Liu, S. Z. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637-640.

5

Yang, D. S.; Chen, T.; Wang, Z. J. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 2017, 5, 18967-18971.

6

Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 2015, 137, 6393-6399.

7

Medford, A. J.; Hatzell, M. C. Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook. ACS Catal. 2017, 7, 2624-2643.

8

Michalsky, R.; Pfromm, P. H.; Steinfeld, A. Rational design of metal nitride redox materials for solar-driven ammonia synthesis. Interface Focus 2015, 5, 20140084.

9

Arashiba, K.; Miyake, Y.; Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 2010, 3, 120-125.

10

Del Castillo, T. J.; Thompson, N. B.; Peters, J. C. A synthetic single-site Fe nitrogenase: High turnover, freeze-quench 57Fe mössbauer data, and a hydride resting state. J. Am. Chem. Soc. 2016, 138, 5341-5350.

11

Nishibayashi, Y. Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions. Inorg. Chem. 2015, 54, 9234-9247.

12

Han, W. F.; Huang, S. L.; Cheng, T. H.; Tang, H. D.; Li, Y.; Liu, H. Z. Promotion of Nb2O5 on the wustite-based iron catalyst for ammonia synthesis. Appl. Surf. Sci. 2015, 353, 17-23.

13

Sehested, J.; Jacobsen, C. J. H.; Törnqvist, E.; Rokni, S.; Stoltze, P. Ammonia synthesis over a multipromoted iron catalyst: Extended set of activity measurements, microkinetic model, and hydrogen inhibition. J. Catal. 1999, 188, 83-89.

14

Hagen, S.; Barfod, R.; Fehrmann, R.; Jacobsen, C. J. H.; Teunissen, H. T.; Chorkendorff, I. Ammonia synthesis with barium-promoted iron-cobalt alloys supported on carbon. J. Catal. 2003, 214, 327-335.

15

Karolewska, M.; Truszkiewicz, E.; Wściseł, M.; Mierzwa, B.; Kępiński, L.; Raróg-Pilecka, W. Ammonia synthesis over a Ba and Ce-promoted carbon-supported cobalt catalyst. Effect of the cerium addition and preparation procedure. J. Catal. 2013, 303, 130-134.

16

Zeng, H. S.; Inazu, K.; Aika, K. I. Dechlorination process of active carbon-supported, barium nitrate-promoted ruthenium trichloride catalyst for ammonia synthesis. Appl. Catal. A Gen. 2001, 219, 235-247.

17

Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939-943.

18

Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

19

Silva, P.; Vilela, S. M. F.; Tomé, J. P. C.; Almeida Paz, F. A. Multifunctional metal-organic frameworks: From academia to industrial applications. Chem. Soc. Rev. 2015, 44, 6774-6803.

20

Mahmood, A.; Guo, W. H.; Tabassum, H.; Zou, R. Q. Metal-organic framework-based nanomaterials for electrocatalysis. Adv. Energy Mater. 2016, 6, 1600423.

21

Sun, J. K.; Xu, Q. Functional materials derived from open framework templates/precursors: Synthesis and applications. Energy Environ. Sci. 2014, 7, 2071-2100.

22

Wang, H. L.; Zhu, Q. L.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for energy applications. Chem 2017, 2, 52-80.

23

Xia, W.; Zhu, J. H.; Guo, W. H.; An, L.; Xia, D. G.; Zou, R. Q. Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606-11613.

24

Xia, W.; Zou, R. Q.; An, L.; Xia, D. G.; Guo, S. J. A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568-576.

25

Zhu, Q. L.; Xia, W.; Akita, T.; Zou, R. Q.; Xu, Q. Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv. Mater. 2016, 28, 6391-6398.

26

Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A. I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F. et al. Metal-organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 2017, 46, 3134-3184.

27

Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800-10805.

28

Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078-8081.

29

Lohe, M. R.; Rose, M.; Kaskel, S. Metal-organic framework (MOF) aerogels with high micro- and macroporosity. Chem. Commun. 2009, 0, 6056-6058.

30

Mahmood, A.; Xia, W.; Mahmood, N.; Wang, Q. F.; Zou, R. Q. Hierarchical heteroaggregation of binary metal-organic gels with tunable porosity and mixed valence metal sites for removal of dyes in water. Sci. Rep. 2015, 5, 10556.

31

Ertl, G. Primary steps in catalytic synthesis of ammonia. J. Vac. Sci. Technol. A 1983, 1, 1247-1253.

32

Hibbitts, D.; Iglesia, E. Prevalence of bimolecular routes in the activation of diatomic molecules with strong chemical bonds (O2, NO, CO, N2) on catalytic surfaces. Acc. Chem. Res. 2015, 48, 1254-1262.

33

Kowalczyk, Z.; Jodzis, S.; Raróg, W.; Zieliński, J.; Pielaszek, J. Effect of potassium and barium on the stability of a carbon-supported ruthenium catalyst for the synthesis of ammonia. Appl. Catal. A Gen. 1998, 173, 153-160.

34

Kowalczyk, Z.; Sentek, J.; Jodzis, S.; Diduszko, R.; Presz, A.; Terzyk, A.; Kucharski, Z.; Suwalski, J. Thermally modified active carbon as a support for catalysts for NH3 synthesis. Carbon 1996, 34, 403-409.

Nano Research
Pages 2341-2347
Cite this article:
Yan P, Guo W, Liang Z, et al. Highly efficient K-Fe/C catalysts derived from metal-organic frameworks towards ammonia synthesis. Nano Research, 2019, 12(9): 2341-2347. https://doi.org/10.1007/s12274-019-2349-0
Topics:
Part of a topical collection:

877

Views

33

Crossref

N/A

Web of Science

33

Scopus

2

CSCD

Altmetrics

Received: 20 December 2018
Revised: 16 February 2019
Accepted: 18 February 2019
Published: 23 March 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return