AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly accessible aqueous synthesis of well-dispersed dendrimer type platinum nanoparticles and their catalytic applications

Adrián Fernández-Lodeiro1,2Jamila Djafari1,2David Lopez-Tejedor3,§Carlos Perez-Rizquez3,§Benito Rodríguez-González4Capelo José Luis1,2Jose M. Palomo3( )Carlos Lodeiro1,2( )Javier Fernández-Lodeiro1,2( )
BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology,University NOVA of Lisbon,Caparica Campus, Caparica,2829-516,Portugal;
PROTEOMASS Scientific Society, Rúa dos Inventores, Madan Parque,Caparica Campus,Caparica,2829-516,Portugal;
Department of Biocatalysis,Institute of Catalysis (CSIC), Madrid, Spain; Marie Curie 2,Cantoblanco, UAM Campus, Madrid ,28049,Spain;
Scientific and Technological Research Assistance Center (CACTI),University of Vigo, Lagoas-Marcosende,Vigo,36310,Spain;

§ David Lopez-Tejedor and Carlos Perez-Rizquez contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The application of novel methodologies to the synthesis of nanomaterials is still a challenge in many different technological and scientific fields. New efficient and reproducible synthetic methodologies, that produce fewer residues and reduce the cost of raw materials must be developed. In the present work, we have explored the attractive possibility to apply the cheap iron (Ⅱ) sulphate salt in the reduction process of the K2PtCl4 to produce colloids suspensions. The synthesis took places in water and was assisted by sodium citrate (SC) using polyvinylpyrrolidone (PVP) as a surfactant. The adjustment of this novelty process allows obtaining well-dispersed and sub-20 nm dendrimer-type platinum nanoparticles (Pt D-NPs). The nano-dendrimers produced have been characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), XRD spectroscopy, inductive couple plasma (ICP) analysis, Fourier transform infrared (FT-IR) and ultraviolet–visible (UV–vis) spectroscopy. Interesting conformational results derived from the size and shape will be discussed. Catalytic application of the Pt D-NPs has been explored in the reduction of p-nitrophenol (p-NP) to p-aminophenol (p-AP) in aqueous media at room temperature obtained TOF value of 253 min-1. Finally, our Pt D-NPs were tested as artificial metalloenzyme showing catechol oxidase activity for oxidation of L-DOPA.

Electronic Supplementary Material

Download File(s)
12274_2019_2350_MOESM1_ESM.pdf (10.5 MB)

References

1

Stark, W. J.; Stoessel, P. R.; Wohlleben, W.; Hafner, A. Industrial applications of nanoparticles. Chem. Soc. Rev. 2015, 44, 5793-5805.

2

Santos, C. S. C.; Gabriel, B.; Blanchy, M.; Menes, O.; García, D.; Blanco, M.; Arconada, N.; Neto, V. Industrial applications of nanoparticles-a prospective overview. Mater. Today Proc. 2015, 2, 456-465.

3

Heiligtag, F. J.; Niederberger, M. The fascinating world of nanoparticle research. Mater. Today 2013, 16, 262-271.

4

Oliveira, E.; Núñez, C.; Santos, H. M.; Fernández-Lodeiro, J.; Fernández-Lodeiro, A.; Capelo, J. L.; Lodeiro, C. Revisiting the use of gold and silver functionalised nanoparticles as colorimetric and fluorometric chemosensors for metal ions. Sens. Actuators B Chem. 2015, 212, 297-328.

5

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.

6

Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 2015, 115, 10530-10574.

7

Perfézou, M.; Turner, A.; Merkoçi, A. Cancer detection using nanoparticle-based sensors. Chem. Soc. Rev. 2012, 41, 2606-2622.

8

Huang, K.; Yan, Y. C.; Yu, X. G.; Zhang, H.; Yang, D. R. Graphene coupled with Pt cubic nanoparticles for high performance, air-stable graphene-silicon solar cells. Nano Energy 2017, 32, 225-231.

9

Kim, J. K.; Kim, D. J.; Lee, C. S.; Cho, H. H.; Kim, J. H. Pt-decorated SnO2 nanotubes prepared directly on a conducting substrate and their application in solar energy conversion using a solid polymer electrolyte. Appl. Surf. Sci. 2018, 450, 9-20.

10

Wang, C. P.; Cai, X. P.; Zhang, J. S.; Wang, X. Y.; Wang, Y.; Ge, H. F.; Yan, W. J.; Huang, Q.; Xiao, J. R.; Zhang, Q. et al. Trifolium-like platinum nanoparticle-mediated photothermal therapy inhibits tumor growth and osteolysis in a bone metastasis model. Small 2015, 11, 2080-2086.

11

Pedone, D.; Moglianetti, M.; De Luca, E.; Bardi, G.; Pompa, P. P. Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev. 2017, 46, 4951-4975.

12

Wang, H. L.; Sapi, A.; Thompson, C. M.; Liu, F. D.; Zherebetskyy, D.; Krier, J. M.; Carl, L. M.; Cai, X. J.; Wang, L. W.; Somorjai, G. A. Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles. J. Am. Chem. Soc. 2014, 136, 10515-10520.

13

Dong, C. Y.; Lian, C.; Hu, S. C.; Deng, Z. S.; Gong, J. Q.; Li, M. D.; Liu, H. L.; Xing, M. Y.; Zhang, J. L. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252.

14

Kim, K. S.; Demberelnyamba, D.; Lee, H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir 2004, 20, 556-560.

15

Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. H. A general approach to the size-and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem., Int. Ed. 2008, 47, 3588-3591.

16

Bigall, N. C.; Härtling, T.; Klose, M.; Simon, P.; Eng, L. M.; Eychmüller, A. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: Synthesis and distinct optical properties. Nano Lett. 2008, 8, 4588-4592.

17

Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size-and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747-4765.

18

Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663-12676.

19

Zhang, H.; Jin, M. S.; Xiong, Y. J.; Lim, B.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 2013, 46, 1783-1794.

20

Ren, J. T.; Tilley, R. D. Shape-controlled growth of platinum nanoparticles. Small 2007, 3, 1508-1512.

21

Herricks, T.; Chen, J. Y.; Xia, Y. N. Polyol synthesis of platinum nanoparticles: Control of morphology with sodium nitrate. Nano Lett. 2004, 4, 2367-2371.

22

Leong, G. J.; Schulze, M. C.; Strand, M. B.; Maloney, D.; Frisco, S. L.; Dinh, H. N.; Pivovar, B.; Richards, R. M. Shape-directed platinum nanoparticle synthesis: Nanoscale design of novel catalysts. Appl. Organomet. Chem. 2014, 28, 1-17.

23

Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718-4721.

24

Mahmoud, A.; Tabor, C. E.; El-Sayed, M. A.; Ding, Y.; Wang, Z. L. A new catalytically active colloidal platinum nanocatalyst: The multiarmed nanostar single crystal. J. Am. Chem. Soc. 2008, 130, 4590-4591.

25

Ma, L.; Wang, C. M.; Gong, M.; Liao, L. W.; Long, R.; Wang, J. G.; Wu, D.; Zhong, W.; Kim, M. J.; Chen, Y. X. et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano 2012, 6, 9797-9806.

26

Wang, J.; Zhang, X. B.; Wang, Z. L.; Wang, L. M.; Xing, W.; Liu, X. One-step and rapid synthesis of "clean" and monodisperse dendritic Pt nanoparticles and their high performance toward methanol oxidation and p-nitrophenol reduction. Nanoscale 2012, 4, 1549-1552.

27

Yuan, Y.; Kaneti, Y. V.; Liu, M. S.; Jin, F. Z.; Kennedy, D. F.; Jiang, X. C.; Huang, J.; Yu, A. B. Seed-mediated synthesis of dendritic platinum nanostructures with high catalytic activity for aqueous-phase hydrogenation of acetophenone. J. Energy Chem. 2015, 24, 660-668.

28

Lu, S. L.; Eid, K.; Li, W. F.; Cao, X. Q.; Pan, Y.; Guo, J.; Wang, L.; Wang, H. J.; Gu, H. W. Gaseous NH3 confers porous Pt nanodendrites assisted by halides. Sci. Rep. 2016, 6, 26196.

29

Kong, X.; Cao, H. L.; Li, C.; Chen, X. One step photochemical synthesis of clean surfaced sponge-like porous platinum with high catalytic performances. J. Colloid Interface Sci. 2017, 487, 60-67.

30

Rolison, D. R. Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity. Science 2003, 299, 1698-1701.

31

Shen, Q. M.; Jiang, L. P.; Zhang, H.; Min, Q. H.; Hou, W. H.; Zhu, J. J. Three-dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications. J. Phys. Chem. C 2008, 112, 16385-16392.

32

Zuo, Y. P.; Wu, L.; Cai, K.; Li, T. T.; Yin, W. M.; Li, D. N.; Li, N.; Liu, J. W.; Han, H. Y. Platinum dendritic-flowers prepared by tellurium nanowires exhibit high electrocatalytic activity for glycerol oxidation. ACS Appl. Mater. Interfaces 2015, 7, 17725-17730.

33

Jung, E. G.; Shin, Y.; Lee, M.; Yi, J.; Kang, T. Interfacial synthesis of two-dimensional dendritic platinum nanoparticles using oleic acid-in-water emulsion. ACS Appl. Mater. Interfaces 2015, 7, 10666-10670.

34

Franc, G.; Badetti, E.; Collière, V.; Majoral, J. P.; Sebastián, R. M.; Caminade, A. M. Dendritic structures within dendritic structures: Dendrimer-induced formation and self-assembly of nanoparticle networks. Nanoscale 2009, 1, 233-237.

35

Wang, L.; Yamauchi, Y. Facile synthesis of three-dimensional dendritic platinum nanoelectrocatalyst. Chem. Mater. 2009, 21, 3562-3569.

36

Mohanty, A.; Garg, N.; Jin, R. C. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew. Chem., Int. Ed. 2010, 49, 4962-4966.

37

Chen, J. Y.; Herricks, T.; Xia, Y. N. Polyol synthesis of platinum nanostructures: Control of morphology through the manipulation of reduction kinetics. Angew. Chem., Int. Ed. 2005, 44, 2589-2592.

38

Lim, B.; Lu, X. M.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Lee, E. P.; Xia, Y. N. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 2008, 8, 4043-4047.

39

Rizvi, M. A. Complexation modulated redox behavior of transition metal systems (review). Russ. J. Gen. Chem. 2015, 85, 959-973.

40

Rizvi, M. A.; Syed, R. M.; Khan, B. Complexation effect on redox potential of iron(Ⅲ)-iron(Ⅱ) couple: A simple potentiometric experiment. J. Chem. Educ. 2011, 88, 220-222.

41

Wen, Y. H.; Zhang, H. M.; Qian, P.; Zhou, H. T.; Zhao, P.; Yi, B. L.; Yang, Y. S. Studies on iron (Fe3+/Fe2+)-complex/bromine (Br2/Br-) redox flow cell in sodium acetate solution. J. Electrochem. Soc. 2006, 153, A929-A934.

42

Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671-675.

43

Jones, A. M.; Griffin, P. J.; Waite, T. D. Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid. Geochim. Cosmochim. Acta 2015, 160, 117-131.

44

Ilbert, M.; Bonnefoy, V. Insight into the evolution of the iron oxidation pathways. Biochim. Biophys. Acta -Bioenerg. 2013, 1827, 161-175.

45

Song, Y. J.; Jiang, Y. B.; Wang, H. R.; Pena, D. A.; Qiu, Y.; Miller, J. E.; Shelnutt, J. A. Platinum nanodendrites. Nanotechnology 2006, 17, 1300-1308.

46

Das, R. S.; Singh, B.; Banerjee, R.; Mukhopadhyay, S. PVP stabilized Pt nano particles catalyzed de-oxygenation of phenoxazine group by hydrazine in physiological buffer media: Surfactant competes with reactants for the same surface sites. Dalton Trans. 2013, 42, 4068-4080.

47

Knecht, M. R.; Weir, M. G.; Myers, V. S.; Pyrz, W. D.; Ye, H.; Petkov, V.; Buttrey, D. J.; Frenkel, A. I.; Crooks, R. M. Synthesis and characterization of Pt dendrimer-encapsulated nanoparticles: Effect of the template on nanoparticle formation. Chem. Mater. 2008, 20, 5218-5228.

48

Rahman, M. S.; Akhter, S.; Ahmed, K. N.; Rahman, M. S.; Saha, R. K.; Hossain, M. J. Tunable synthesis of platinum nanoparticles by EtOH reduction in presence of poly (vinylpyrrolidone). Bangladesh J. Sci. Ind. Res. 2015, 50, 87-89.

49

Francis, A. J.; Dodge, C. J. Influence of complex structure on the biodegradation of iron-citrate complexes. Appl. Environ. Microbiol. 1993, 59, 109-113.

50

Ruales-Lonfat, C.; Barona, J. F.; Sienkiewicz, A.; Vélez, J.; Benítez, L. N.; Pulgarín, C. Bacterial inactivation with iron citrate complex: A new source of dissolved iron in solar photo-Fenton process at near-neutral and alkaline pH. Appl. Catal. B Environ. 2016, 180, 379-390.

51

Yin, B. S.; Ma, H. Y.; Wang, S. Y.; Chen, S. H. Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J. Phys. Chem. B 2003, 107, 8898-8904.

52

Yin, J.; Wang, J. H.; Li, M. R.; Jin, C. Z.; Zhang, T. Iodine ions mediated formation of monomorphic single-crystalline platinum nanoflowers. Chem. Mater. 2012, 24, 2645-2654.

53

Zhou, S.; Yang, T. H.; Zhao, M.; Xia, Y. N. Quantitative analysis of the reduction kinetics of a Pt(Ⅱ) precursor in the context of Pt nanocrystal synthesis. Chin. J. Chem. Phys. 2018, 31, 370-374.

54

McDermott, D. P. Vibrational assignments and normal-coordinate analyses of γ-butyrolactone and 2-pyrrolidinones. J. Phys. Chem. 1986, 90, 2569-2574.

55

Borodko, Y.; Habas, S. E.; Koebel, M.; Yang, P. D.; Frei, H.; Somorjai, G. A. Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J. Phys. Chem. B 2006, 110, 23052-23059.

56

Liu, H.; Zhang, B.; Shi, H. Q.; Tang, Y. J.; Jiao, K.; Fu, X. Hydrothermal synthesis of monodisperse Ag2Se nanoparticles in the presence of PVP and KI and their application as oligonucleotide labels. J. Mater. Chem. 2008, 18, 2573-2580.

57

Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Tilley, R. D. In situ and ex situ studies of platinum nanocrystals: Growth and evolution in solution. J. Am. Chem. Soc. 2009, 131, 14590-14595.

58

Wang, L.; Hu, C. P.; Nemoto, Y.; Tateyama, Y.; Yamauchi, Y. On the role of ascorbic acid in the synthesis of single-crystal hyperbranched platinum nanostructures. Cryst. Growth Des. 2010, 10, 3454-3460.

59

Wang, L.; Wang, H. J.; Nemoto, Y.; Yamauchi, Y. Rapid and efficient synthesis of platinum nanodendrites with high surface area by chemical reduction with formic acid. Chem. Mater. 2010, 22, 2835-2841.

60

Liu, M. H.; Yan, X. P.; Liu, H. F.; Yu, W. Y. An investigation of the interaction between polyvinylpyrrolidone and metal cations. React. Funct. Polym. 2000, 44, 55-64.

61

Filice, M.; Marciello, M.; del Puerto Morales, M.; Palomo, J. M. Synthesis of heterogeneous enzyme-metal nanoparticle biohybrids in aqueous media and their applications in C-C bond formation and tandem catalysis. Chem. Commun. 2013, 49, 6876-6878.

Nano Research
Pages 1083-1092
Cite this article:
Fernández-Lodeiro A, Djafari J, Lopez-Tejedor D, et al. Highly accessible aqueous synthesis of well-dispersed dendrimer type platinum nanoparticles and their catalytic applications. Nano Research, 2019, 12(5): 1083-1092. https://doi.org/10.1007/s12274-019-2350-7
Topics:

856

Views

11

Crossref

N/A

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 20 December 2018
Revised: 30 January 2019
Accepted: 18 February 2019
Published: 10 April 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return